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It is evident from (6) and (7) that, thanks to a con
sideration of the field of virtual photons, the 
classical quantities x and p x are operators which 
do not commute with each other: 

(8) 

(X) 

J = \ y2dy 
J (y2 -1)2 + y2w2ye • 
0 0 

In deriving the last formula, we took into con
sideration the permutation relations 

[asatJ- =ass' -x~x~,. 

The integral J does not diverge and has the 
value 

J = -rrj2ywo + 0 {yw0). (9) 

Therefore, in first approximation, we obtain 
permutation relations which coincide with the per
mutation relations (l) of wave theory. 

Making use of the operator expressions (6) and 
(7) for x and p , we can obtain the energy levels 
for the harmonic oscillator. If the momentum is 
given, not in the form (8), but in the form 

Px= mx, (10) 

as was done, for example, in Ref. 8, then an addi
tional factor of 2 appears on the right side of Eq. 
l. It is of interest to note that when photons are 
absent (a+ a , == 0) it is better to use Eq. (7) for 

s s 
the momentum in the expression of zero point 
energy 

(ll) 

rather than Eq. (lO) as would have been more natu
ral in the given case. 

Giving the momentum by Eq. (7), we find that 
the zero-point energy will aut~Jmatically contain 
the necessary subtraction terms, leaving the finite 
quantity 

"kwo nw5e2 ( 3c3m ) (12) 
Eo= -2- + -3 3 In -2 2 - 1 . -rrc m \ e w0 

The first term is the well-known expression for the 
zero-point energy without vacuum terms, and the 
second is an additional energy caused by the 
vacuum action. 

A strict quantum electrodynamical derivation of 
the corresponding formula gives an expression 
very close to Eq. (12): 

Eqm- 1iwo nw~e2 ( mc2 ) ( ) 
u - -2- + 3rrc3m In 1iwo - 0,2 . 13 

It is of interest to observe that if we limit the in
tegral of type (9) (which is also encountered in the 
calculation of the zero-point energy), to rela-
tivistic frequencies of vibration()) == 2mc 2 /tl 

max ' 

as was done by Weisskopf9 , then we obtain Eq. 
(13) for the additional energy, with the help of the 
fluctuation method. 

Thus a classical system which describes the 
motion of an electron in its interaction with the 
second quantized field of photons (actually radia
ted., or only virtual) is the same as in quantum 
mechanics. 
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THE present research deals with a resonance 
which can take place under certain conditions 

in synchrotrons, due to the presence of radiation, 
and which can bring about amplification of the 
amplitude of betatron oscillations. The main 
points are the following: 

l. In the absence of radiation, the betatron os
cillations in synchrotrons are described by an equa
tion of the form 
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(l) 

where x is the departure from the equilibrium or
bit, F ( 0 is some periodic function which is -de
termined by the nature of the change in the mag
netic field, (is a parameter which characterizes 
the position of a particle in the synchrotron. We 
shall consider that the synchrotron consists of N 
identical sectors; in each of the sectors, the 
parameters r: changes by 211. Then one revolution 
of the particle in the synchrotron corresponds to a 
change of (by 2N 11, F ( ( + 217) = F ( (). 

As is known from the theory of Flock, solutions 
of Eq. (l) take the form 

(2) 

where f1 is a parameter which is determined by the 
behavior of F ( () . The problem of the investiga
tion of the stability of the motion described by 
Eq. (l) consists of the calculation of the value of 
fl· Choosing f1 in the form of a function of the 
parameters which characterize the synchrotron, we 
obtain the conditions for which the motion is 
stable, i.e,. is suitable for practical use. 

Equation (l) does not hold in the presence of 
radiation. In such a case we must consider the 
effect on the system of the radiation and of the 
accelerating interval and subsequently, investi
gate the motion of the system towards stability. 

2. We assume that we can neglect the quantum 
character of the radiation and consider the radia
tion as a continuous process of energy loss. Then 
Eq. (l) is somewhat modified by the replacement 
of F ( () by another function F 1 ( () with the same 
period, and a periodic function of ( with period 
211 N (for definiteness, we consider the case of a 
single accelerating interval) appears on the right
hand side. If, for the modified homogeneous equa
tion, the parameter of stability is denoted by 11 1 

( 11 1 is always close to f1 ), then for 

11-1N = p, p = 0, ± 1, ± 2,... (3) 

in the solution of the equation with the right-hand 
side, there appear long-lasting terms, i.e., reso
nance takes place. The amplitude of the betatron 
oscillations begins to increase rapidly. 

By way of an example, we consider a synchro
tron with four sections with soft focussing. We 
denote by l the lengths of the rectalinear sections, 
by R the radius of curvature of the curved sec
tions and by n = -(r/H)(dH/dr) the power of the 
decay of the magnetic field. Then the condition 

for stability of motion for the calculation without 
consideration of radiation is given by the follow
ing inequality: 

l -'! -<2(i-n) • 
R (4) 

x[i+cos; Yi-n]/ Sin; Yi-n. 

Radiation resonance occurs when 

!:_=2(i-n+e:)-'1• (5) 
R 

)(cos ( ~ Vi- n + e:) j sin (; Vi - n + e:) . 

In this equality, £ is a very small quantity which 
changes slowly in the process of the acceleration 
cycle. Thus at different stages of the accelera
tion, different values of l/R are dangerous, i.e., 
there is a region of resonance values. This 
region of resonance values lies within the region 
of stability. 

3. What has been demonstrated above is valid 
when the quantum character of the radiation is 
neglected. It is now clear what changes in this 
treatment are brought about by consideration of 
the quantum character of the radiation, because 
it is known 1 that the latter influences the motion 
of the electron. 

The physical picture of the resonance described 
above is that the particle passes successively 
through accelerating regions in one and the same 
phase of its betatron oscillation. It can be cal
culated that in one revolution the mean phase 
change < ( L\ cp2 ) >~ is in the thousandths of a 

av 
radian. Thus forE = l bev, A = l em and n = 0.6, 
< ( L\ m) 2 > ~ .. 1.2 X w- 3 radian. This means 

T av 
that during one thousand revolutions, the quantum 
character of the radiation does not lead to the de
parture of the particle from resonance. 

On the basis of all that has been said, it can 
be concluded that the resonance described above 
is dangerous for the operation of the synchrotron. 
In practice, one should stay as far away from this 
resonance as possible. We have called it radiative 
resonance because it is determined by radiation 
and is more intense the more intense the radiation. 
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