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AS is well known, one of the fundamental bases 
of quantum mechanics is the uncertainty prin

ciple, first obtained by Heisenberg. In operator 
notation, it has the form 

PxX -XPx = i./i. (l) 

The attempts of the representatives of the Copen
hagen school of physicists (Bohr, Heisenberg and 
others) to consider the uncertainty principle as 
the result of uncontrollable interaction between 
the object and the measuring apparatus did not 
develop the physical significance of this important 
relation, not to mention the fact that such an in
terpretation led to a subjective, idealistic under
standing of the phenomenon of the microworld (for 
details, see Ref. 1, p. 183 ). 

As was pointed out by Blokhintsev (see Ref. 2, 
p. 154 ), the connection between corpuscular and 
wave properties, for the presence of many parti
cles, can be correctly established with the aid 
of the introduction of statistical ensembles. How
ever, statistical ensembles are not suitable for the 
interpretation of the uncertainty principle in its 
application to an isolated electron. 

We attempt to construct a theory of electron 
motion (in isolated examples, for the time being), 
in which the quantum effects would he considered 
as the result of the singular effect of a collection 
of virtual particles which form the vacuum. An 
analogy can be established between the quantum 
effects and the theory of fluctuations, for ex
ample, in the investigation of radial vibrations in 
the theory of the "radiating" electron. 

Making use of quantum theory, one of us, to
gether with Ternov3 , succeeded in showing that 
the square of the amplitude of excitations (due to 
radiation in the direction of an incident photon 
with energy M = n cu) of macroscopic radial vi
brations (which make up the "macro-atom") 
will increase· according to the law 

(2) 

On the oth,.er hand, this same quantum formula can 
he obtained in semi-classical fashion. For this 
purpose we must consider, in the classical equa
tions of the vibration of the electron (radial com
ponent), the fluctuating forces which are statisti
cally independent: 

F fluct = [R~E I (1 - q) c2] ll' (t- ti), (3) 

where q is the power of decay of the magnetic 
field in the neighborhood of the equilibrium orbit 

(ll "-' Wq, R = radius). In the identity of the two 
methods, we are inclined to see the connection (in
cluding even the quantitative side of the question) 
between the quantum method and the theory of 
fluctuations, where the so-called Markov chains 
occur, i.e., the statistical independence of con
secutive processes. 

We shall attempt to connect the quantum char
acter of the motion of an electron in the micro
world with the fluctuations of virtual photons. 
Similar attempts have already been made by a 
series of authors (see, for example, Welton, Ref. 
4 and Kalitsin, Ref. 5 ). 

Let us consider the equation of motion of a 
harmonic oscillator in the field of virtual photons; 

mx =- mw~x- e (Ex+ e;_), (4) 

where 

Ei = - ..!_ oA~ = - ~ ~ ·; 
x c at 3 c3 ' 

1 aA~ 
E =--- (5) 

c iJt 

is the self-acting electric field, i.e., unradiated 
longitudinal photons. 

Then, with the help of division of the operator, 
we find the following express ion for x 

_ L-'f, ~ ew v2rcch 
X-- LJ- --

- me x 
(6) 

da exp{-iNt+ i~r} . ) 
X i x + complex conjugate ' 

\ Ni- w2 - iyw3 

where Y = 2e 2/ 3mc 3 • cu =ex,= cu 0 y, and ax is the 

quantum amplitude of the vector-potential. 
In the given problem, the momentum of the parti

cles must he equated to 

p =mx-~(A +Ai) (7) 
X C X .~ 

=- c''· ~ ew~ v21tch 
- C X 

( ax exp {- iwt;+ i~r} ) 
X 1 2 , + complex conjugate . 

\ wo- w2 - iycua 
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It is evident from (6) and (7) that, thanks to a con
sideration of the field of virtual photons, the 
classical quantities x and p x are operators which 
do not commute with each other: 

(8) 

(X) 

J = \ y2dy 
J (y2 -1)2 + y2w2ye • 
0 0 

In deriving the last formula, we took into con
sideration the permutation relations 

[asatJ- =ass' -x~x~,. 

The integral J does not diverge and has the 
value 

J = -rrj2ywo + 0 {yw0). (9) 

Therefore, in first approximation, we obtain 
permutation relations which coincide with the per
mutation relations (l) of wave theory. 

Making use of the operator expressions (6) and 
(7) for x and p , we can obtain the energy levels 
for the harmonic oscillator. If the momentum is 
given, not in the form (8), but in the form 

Px= mx, (10) 

as was done, for example, in Ref. 8, then an addi
tional factor of 2 appears on the right side of Eq. 
l. It is of interest to note that when photons are 
absent (a+ a , == 0) it is better to use Eq. (7) for 

s s 
the momentum in the expression of zero point 
energy 

(ll) 

rather than Eq. (lO) as would have been more natu
ral in the given case. 

Giving the momentum by Eq. (7), we find that 
the zero-point energy will aut~Jmatically contain 
the necessary subtraction terms, leaving the finite 
quantity 

"kwo nw5e2 ( 3c3m ) (12) 
Eo= -2- + -3 3 In -2 2 - 1 . -rrc m \ e w0 

The first term is the well-known expression for the 
zero-point energy without vacuum terms, and the 
second is an additional energy caused by the 
vacuum action. 

A strict quantum electrodynamical derivation of 
the corresponding formula gives an expression 
very close to Eq. (12): 

Eqm- 1iwo nw~e2 ( mc2 ) ( ) 
u - -2- + 3rrc3m In 1iwo - 0,2 . 13 

It is of interest to observe that if we limit the in
tegral of type (9) (which is also encountered in the 
calculation of the zero-point energy), to rela-
tivistic frequencies of vibration()) == 2mc 2 /tl 

max ' 

as was done by Weisskopf9 , then we obtain Eq. 
(13) for the additional energy, with the help of the 
fluctuation method. 

Thus a classical system which describes the 
motion of an electron in its interaction with the 
second quantized field of photons (actually radia
ted., or only virtual) is the same as in quantum 
mechanics. 
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THE present research deals with a resonance 
which can take place under certain conditions 

in synchrotrons, due to the presence of radiation, 
and which can bring about amplification of the 
amplitude of betatron oscillations. The main 
points are the following: 

l. In the absence of radiation, the betatron os
cillations in synchrotrons are described by an equa
tion of the form 


