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( i = l, 2 ), where x. i is the absorption coeffi­
cient of the i th meson, we obtain the following 
expression for the effective cross section: 

"' 
a= ~IF(w) 12\ EI(w -EI) 

2~ J wa 
0 

(IO) 

where ax. is the cross section for the capture, 
by a nucleus of radius R, of a pion with an 
absorption coefficient x.. 

The integration cannot be carried out in 
general, since the dependence of ax. on energy 
is unknown. If one takes x. to be independent of 
energy, x. 1 = x. 2 = x., then we obtain 

(ll) 

If we introduce a cut-off in angle, then under 
these conditions the cross section becomes 

(12) 

In addition to the one considered, there are 
possible a series of other processes for the forma­
tion of nuclear stars by y -quanta. However, in 
view of the fact that in this process an effective 
role is played by a region large in comparison to 
nuclear dimensions, one can expect that the 
considered mechanism is the fundamental one at 
high energies w > > fJ. • 

The author makes use of the opportunity to 
express his thanks to I. Ia. Pomeranchuk for his 
guidance of the work. 
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T HE: magnitude of the transition energy in a 
strong focussing accelerator is determined by 

the formula 

F = mc2~X-'l•; IX = dIn L/d ln p, cr (l) 

where L is the length of the orbit, p is. the momen­
tum of the particle. Usually, only the direct de­
pendence of the orbit length on the momentum is 
taken into account, resulting from the equation 

where p = p (e) is the radius of curvature of the 
unperturbed trajectory (for (~pIp )synch = 0)*, 
l is the length of a periodic sector, e = 2 " s I l, 
s is the coordinate along the unperturbed trajectory, 
His the magnetic field, r is the horizontal devia­
tion from th; equilibrium orbit. However, in the 
vicinity of resonances, L obviously depends on the 
distance from the resonances, fr , Ez , and these 
distances depend sharply on (~pip )synch • 

Therefore 

IX = a ln L + a ln L deoz 
a ln p aeor d In p 

a ln L deoz 
+ --ae- dIn p = a.P +IX,, oz 

(3) 

(4) 

where vr, z are the betatron quasi-frequencies of 
the transverse oscillations. The derivatives in 
Eq. (3) are taken at (~pIp) h = 0, i.e. 

~ sync 
Eor , t 0 z correspond to the mid-position of the 

synchrotron oscillations. The quantity a. corre­
sponds to a high energy me 2 a. -l/ 2 • At such 
energies, the betatron oscillations about the 
equilibrium orbit are already sufficiently small; 
therefore parametric resonance, generally 

speaking, plays a weak role in the effect.** 

Thus we have to understand L to be the length of 
the perturbed equilibrium periodic orbit. Clearly, 
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1 Hz 1 ( !:.Hz) 
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where ~ Fl and Fl are the perturbations of the 
magnetic ffeld alon'g the unperturbed equilibrium 
orbit. In order to calculate a.l , one should 
substitute in Eq. (5), in place of rand i, rl and 
z E , which describe the perturbed equilibrium 
orbit in the vicinity of an external resonance for 
( ~ p I p ) h = 0. They are found from the sync 
formulas 

1 hr n [ • (' " · )]" r ~ ----- -"e 'Prexp 1e:0r v- IYr , 
" I 'PI max e:or 

(7) 

dr 1 hr [d'P; ] 
____.! ~ -1 --- Re dtl exp (ie:0r 6- iyr) 
d6 'P lmax e:Qr 

(8) 

and similarly for z; cp are Floquet functions, r, z 

cp (6) = f (6) exp (ive); (9) 

f (6) = f (6 + 27t), cpcp*'- cp*cp' =- iw. 

For ~ Fl z and H r , it is necessary to substitute 
Eq. (5) into Eq. (6) 

!:.Hz~ (oHz'or) r ,, Hr ~ (oHzior) z,. (10) 

It is easy to see that only the terms quadratic 
in r z E' r 'E, z 'E of Eq. (5) contribute to a. E' 

u~u'ally an operating point is selected such 
that v, = v z , therefore justifying the approximate 
equation 

2~ 2~ 

~ a mar I 'Pr 12 d6 ~-' aHH!i)r I C?z 12 dtl; (ll) 
~ Hop ~ oP 
0 0 

Hz 
a= iJHzfdr ' 

where Jfoc and f de£ are integrals respectively 

over a focussing and defocussing sector, p 0 is 
the unperturbed radius of curvature within an 
ordina~y magnet. In addition we ml'ke use of the 
dependence of the frequency on the momentum 

21t 

!:.v = ± _1_ (}_ )2 \ 1 'P 12 iJH(or dO (!lp) . 
r, z 2nw 21t J H 0p p 

0 

(13) 

The upper sign refers to v , the lower to v 
r z 

Then we obtain 

~ = ..!._ (A~rla2 + A~zfa2 ) 
" w e:oz e:oz (14) 

x[ 1 ( \ 1 cp l2 dtl- \ 1 'P l2 de)]2, 
4"lt2Po I 'P lmax ~ j 

foe de£ 

where A 0 r , A 0 z are the amplitudes of the 
transverse oscillations for ( ~ p I p ) synch = 0: 

A or, z = I hor, z I e:or, z I· (IS) 

If A 0 r '"'"' A 0 z , E0 r '"" E0 z , then generally 

where M is the number of periodic sectors, L = M l. 
It should be remarked that even in the absence 

of oscillations about the equilibrium orbit, the 
influence of parametric resonance can be told in 
that in place of Eo in Eqs. (15), (16), at the worst 
E0 - g enters, where g is the half width of the 
region of parametric resonance. 

As can be seen from Eq. (8), a.E is a strong 
function of the quantity E0 ( a.E'"" E0- 3 ). From 
Eq. (16) it is seen that a.E can easily attain a 
magnitude '"'"' ( 1- 5) x I0-3 • The sign of a. E 

is determined by the sign of E 0 ( we note that in 
accelerators E E > 0 always ). From this follows 

r z l . h the important result that in acce erators Wit 
compensation for the transition energy according 
to the method of Vladimirsky - Tarasov 1, one 
should always choose the operating point in the 
( v, , v z ) plane such that the dist~nces fro.m 
neighboring external resonances s!tisfy the me­
qualities E7 < 0, f z < 0. 

In accelerators without compenettion for the 
transition energy the effect can introduce a large 
uncertainty at the moment of the phase flip. It. 
would be possible to avoid this, if it were. possi­
ble to control the deviations E0 r , E0 z durmg the 
course of the accelerating cycle. 

However, if control of the deviftions £0 r, z is 
possible, then one should apply th~ ~£feet 
toward the elimination of the transition energy 
[ by means of a slow reduction of (E 0 ) ] • 

Equation (16) shows that under standard condi­
tions this is quite realistic. It is necessary to 
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take into account that at energies "-' 5 - 10 mev 
the free betatron and synchrotron oscillations are 
already sufficiently attenuated. This would be 
the cheapest way of eliminating the transitioq 
energy. 

*It is necessary to remark that for the calculation of 
ex, only that part of f:...p If is important which corre­
sponds to an oscillation o the momentum about some 
equilibrium value. We denote it by (f:...p I p } 

sync h. 
**By parametric resonance we mean one due to a 

perturbation of the gradient a H a r; by an external 
resonance, one due to a perturbalion of the field Hz • 
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Trmslated by M. Rosen 
192 

Relaxation Times T1 and T2 in Anthracite 
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T HE authors were the first to measure the elec­
tronic para-magnetic resonance in anthracite 

(Ref. I). It was found that the half-width of the 
absorption line in anthracite is f... H = 0. 7 oersted 
i.e., considerably smaller than in other types of 
stone coals. The value f':o..H = 0.3 oersted was 
obtained for anthracite in Ref. 2. Probably the 
half-width varies somewhat for the different kinds 
of anthracite. Our last measurements on the 
samples of Kuzbask anthracite for the frequencies 
12.25 and 22 me gave f:...H = 0.5 oersted. We 
wanted to determine foranthracitethe time of spin­
lattice relaxation, T 1• For this purpose, with the 
above mentioned frequencies, measurements of the 
degree of saturation (Ref. 3) were made for 
different amplitudes of the oscillating magnetic 
field. The magnitude of the amplitude was deter­
mined with the method previously used in Ref. 4 . 
The method was checked on cxcx-diphenyl - (3 -
picrylhydrazyl, for which T1 = 6.6 x 108 sec; 
moreover, the parameter of the half-width 'T 
was taken equal to 6.0 x 10 8 sec in corres~ndence 
with the halfwidth of the line f... H = 0.95 oersted 
found for the monocrystal of the above-named 
free radical (Ref. 5 ). The magnitude of T 1 is in 
good agreement with the researches of Refs. 
3 and 6. For the Kuzbask anthracite sample the 

time T1 wa-s equal to 12 x 10- 8 sec for the core 
T 2 = 11.4 x 10 - 8 sec. 

The theory of paramagnetic resonance in sys­
tems with large exchange interaction (Ref. 5) 
demands that T 1 "' T 2 ; therefore, our result 
confirms the presence of strong exchange in 
anthracite, noted in Ref. I. 

In conclusion, we point out that for the tempera­
ture of liquid air, the relaxation time for anthra­
cite is somewhat longer, since the saturation 
occurs for smaller amplitudes of the oscillating 
field. This is in agreement with the concept that 
the carriers of paramagnetism in anthracite are 
"broken bonds" between the carbon atoms. 
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Concerning the Blatt, Butler, and Shofroth 
Paper on Superfluidity and Superconductivity 

Theory 
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I N a series of papers, Blatt, Butler and 
Shafroth 1- 6 concern themselves with the theory 

of superfluidity md superconductivity, and come 
forth with some far-reaching conclusions, with 
which it is impossible to agree. Two points stand 
out. 1- 6 The first, associated with a consideration 
of the superfluidity and superconductivity of an 
ideal Bose gas in a vessel, has already been dis­
cussed, 7 and has only methodological significance. 
The second essential point - the statement con­
cerning the finiteness of the correlation length A 
for the momenta of a pair of particles in all real 
systems, in contrast to an ideal Bose gas, is 
incorrect. The momentum correlation coefficient 
is introduced 3 in such a way that it is not directly 


