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and then the specimen is heated, the current 
changes its sign. Specially prepared samples 
showed that the reverse current can be determined 
by the rapidity of change of the temperature dif­
ference of the electrodes. The corresponding 
curveE are in Fig. 4. One can think that with a 
change of temperature gradient in the sample with 
time, a reverse thermal diffusion current arises, de­
tamined by the recombination of space charge. In 
view of the small direct current conductivity, this 
reverse current can exceed the direct current, and 
the total current changes sign. 

1 G. I. Skanavi and A. I. Demeshina, J. Exptl. Theoret. 

FIG. 4. The dependence of current and various elec­

trode temperatures on time for the dielectric SVT. 1 -­

temperature on the ''hot" electrode, 2-- temperature 

Phys. (U.S.S.R.) 19, 3 (1949). 

2 G. I. Skanavi, Elektrichestvo 8, 15 (1947); J. Exptl. 
Theoret. Phys. (U.S.S.R.) 17, 399 (1947). 

of the ''cold" electrode, 3-- the difference in tempera­

ture of the electrodes, 4-- current through the sample. 
Translated by L. A. D'asaro 
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Approximate solutions are given for the system of equations which describe the behavior 
of the components of the magnetization vector in a strong high-frequency magnetic field for 
intermediate relaxation times; both symmetrical and asymmetrical sinusoidal modulation are 
considered, The approximation is investigated and the limits of its applicability indicated. 
The solution is used to derive expressions for the longitudinal and transverse relaxation 
times, The theoretical conclusions are found to be in agreement with the results of experi­
mental studies, 

INTRODUCTION 

T HF: shapes of the dispersion and absorption 
signals in nuclear magnetic resonance depend 

on the relaxation times (longitudinal and trans­
verse), which are characteristics of the internal 
fields, and on the external conditions (the strength 
of the high-frequency magnetic field, the amplitude, 

frequency and wave-shape of the modulating mag­
netic field, etc.). Although numerous analyses of 
the signal shape have been given in the literature 1-10 

there are still many experimentally encountered cases 
which have not been considered. 

The present paper is concerned with the signal 
shape when a "strong" high-frequency magnetic 
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field is applied; sinusoidal modulation of the longi­
tudinal magnetic field is assumed. We shall be in­
terested in the intermediate relaxation-time case, 
i.e., the case in which the period of the modulating 
field T is comparable to the relaxation times (the 
longit;'dinal relaxation time is desi~nated by T 1 
and too transverse relaxation time by T 2 ). By 
"stron1(' hi8h-freguency magnetic field, as is cus­
tomary ,S •1 •11 , is meant a field such that the 
vector M, which describes the nuclear magnetiza­
tion, is highly perturbed or turned over at resonance. 
The case of intermediate relaxation times is of 
interest since it is frequently encountered in prac­
tice. 

In preparation for the analysis of the signal 
shape, which follows, we introduce the dimension­
les~ parameters: 

(1) 

He wmHm 
X=-- ),= --

Hm ' J y J Hi 
and the dimensionless time x = w t ( t is the time; m 
wm is the angular frequency of the modulating field; 
H is the amplitude of the modulating magnetic 

m 
field; H 1 is the amplitude of the high-frequency 
magnetic field and He is a fixed quantity which is 
superimposed on the resonance value of the de 
magnetic field H 0 • 

A general expression for the dispersion signal u 
in a strong high-frequency field ( ..\ < l) has been 
given in Refs. l and 10. The solution is given as 
a series expansion in terms of the parameter ..\. 
When the longitudinal magnetic field is sinusoid­
ally modulated, the zeroth approximation has the 
form 

0 ( ) 0 ( ) G (x0) 
U X = U Xo a (x) (2) 

x exp {v (x0 - x) + (fl:- v) [H (x0)- H (x)]} 

X + M \ vk (x +sin 'fJ) 
0 .) a (x) G ('fl) 

x, 

x exp{v ('IJ- x) + (p.- v) [H ('IJ)- H (x)]} d't], 

where x 0 is the initial time and M 0 is the constant 

component of the magnetization vector 

G (1) = [ 1 + k2 (x +sin x) 2]''•, 

'11 

H ('IJ)- H (x) = ~ [G (~)r2 d~. 
.~ 

In the symmetrical modulation case ( x = 0 ), the 
shape of the dispersion signal is given by the ex­
pression 1 0 

u<0> (x) = u<o> (x0 ) !!g(~;~ exp {f (xo)-'- f (x)} (3) 

X 

\ vk sin 'fJ + M 0 .) g (x) g ('fJ) exp {f ('IJ)- f (x)} d't], 
x, 

where 

[.1.-'1 
f (x) = vx + . arc tg (VI + k2fgx) v 1 + k 2 ' 

g (x) = [l + k 2 sin2 x]'1•. 

Examination of Eqs. (2) and (3) shows that in the 
steady-state ( x0 -> - oo) the form of the dispersion 
signal is determined by the second term in Eqs. 
(2) and (3). It has been shown in Ref. 10 that in 
the first approximation the steady-state value of 
u ( 1) is zero. Hence, if the parameter ..\ is small, 
the shape of the dispersion signal u is given by 
the zeroth approximation, Eqs. (2) and (3) (to 
second order te:ms in ..\ ). In the following the 
zero symbol will be omitted in the quantity u < 0 >(x). 

l. SYMMETRICAL MODULATION 

We shall consider the form of the steady-state 
dispersion signal u 8 t(x) for symmetrical modulation 
( x = 0 ), i.e., the case in which the longitudinal 
magnetic field H is of the form H = H 0 + H sinx. - z z m 

From Eq. (3) we hare 

u (x) = Mo e-f(x) 
st g (x) 

-00 

The analysis of this signal is difficult because 
the integral which appears in Eq. (4) cannot be 
expressed in terms of tabulated functions. 

(4) 

Under certain conditions, Eq. (4) can be simpli­
fied considerably. We introduce the notation 

-~-r 

C- = \ vk Sin 'f) f(~)d 
. j g('fJ) e "fj, 

(5) 

-oo 

:er 

J ( ) ~ vk sin ·IJ J<~>d 
X, X, = ( ) e ., 'IJ· 

g "lj 
X 

Then 

Ust(x) = [M0/g (x)] e-f(x) [C, + J (x, x,)]; (6) 

list (x,) f( . } 
C, = ~- g (x.,.)e -', 

0 
(7) 
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The quantity x 7 is the time corresponding to the 
onset of resonance, i.e., u ( x 7 ) = 0.5 u ( xm) where 
xm is the time at which the signal reaches its 
maximum value. It has been shown in Ref. 10 
that XT < 0. 

We now ascertain the values of v, p. and k in Eq. 
(6) for which f ( x, x 7 ) can be neglected as com­
pared with the quantity C 7 . Analysis of Eq. (5) 
indicates that in the region from -I x 7 I to I x 7 I, 
the quantity f ( x, x 'T) assumes its 
maximum values at x = 0 and x = I x 7 I· We are 
concerned with the intermediate relaxation time 
case, i.e, theca~ in which T m T 1 varies within 
the limits 0.1 to 10 (as has been pointed out in 
Refs. 3 and 12, T 2 < T 1 and the quantity T m/T 2 

can vary over wider limits). To estimate the rela­
tive magnitudes of the quantities C 7 and f (x, x 7 ), 

the values of f ( 0, - I x 7 I ) , !( I x I , - I x 7 I ) 
and C 7 were computed by numerical integration, 
using the folla.ving values for the parameters: v 
from 0.001 to 5, p. from p. = v to 20 for k equal to 
10 and 20 and x 7 equal to 0.2 and 0.1, respec­
tively. The results are presented graphically in 
Fig. 1 which shows the different regions of the 
dependence of p. on v. The curves which bound the 
regions k = 10 and k = 20 are plotted using the 
conditions: 

J (0, -I x, [) = 0, IC,, 

J ( I x, I' - I x, I ) = 0. 1 cT. 

The following condition is satisfied within these 
regions: 

-J(x, -jx,I)<O.IC,. 

p 

10 

5 

15 J) 

FIG. 1. Limits of applicability of the approximate 
solutions for two values of the quantity k. Regions 
1 and 2 correspond to k = 20 and k = 10, respectively. 

Thus for a specified value of k, if for a given 
value of the quntity v, the value of p. lies within 
the region indicated, then the quantity f ( x, x ~ in 
Eq. (16) can be neglected (for a signal width of 

21 x 7 I and 10 percent accuracy). Then we ob­
tain the following expression for u st from Eqs. (6) 
and (7): 

, \ ( ) p (x,) . . 
Ust (X 1 == Ust X, ~ exp {f (x,)- t(x)}. (8) 

this expression is valid in the resonance region. 
Comparing Eqs. (8) and (3), we see that the 

steady state and transient solutions have the same 
form; hence, for rapid passage through resonance, 
the form of the dispersion signal remains fixed, 
although its m!Wlitude varies with time. 

The rate at which the signal builds up can be 
used to determine the longitudinal relaxation time 

T 1 in those cases for which the build-up time is 
large compared with the modulation period. From 
Eqs. (3) and (8) it follows that 

c 
u (x) = g (:) e-f(x) + U8 t (x), (9) 

C0 = u (x0 ) g (x0 )ef<x,). 

After a time 2m (i.e., after n modulation periods) 
the magnitude of the signal will be 

u (x + 2rrn) (10) 

Co = g~(x) exp {- j(x)- 2-rrm} + Ust (x). 

From Eqs. (9) and (10) we have 

_ 1 I [ u (x)- u8 t (x) ] 
'1--- n 

2nn u (x + 2rrn)- u 8 t (x) · 
(ll) 

If v-+ 0 then from Eqs. (5) and (6) u ( x) -+ 0 and 
st 

_ 1 I [ u (x) J '1--- n 
':l.rrn u(x + 2rrn) · 

(l2) 

To make practical use of this scheme, the screen 
of the oscilloscope can be photographed with ex­
posure times equal to 3-5 modulation periods. Us­
ing Eqs. (11) and (12) the value of T 1 can be de­
termined from the ratio of the amplitudes of 
several pulses which appear in sequence on the 
photograph. 

In Ref. 10 a detailed analysis of the shape of 
the dispersion signal in the transient state was 
given for symmEtrical modulation with v-+ 0. It 
has been indicated above that the conditions for 
which Eq. (8} is valid are such as to make the 
transient md S:eady state solutions identical. 
Under these conditions an analysis of Eq. (8), 
similar to that which was carried out in Ref. 10, 
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indicates that the dispersion signal is bell­
shaped and asymmetrical. We now introduce the 
following notation: xm is the time which corre-
sponds to u ( x ) = u ; x and xb indicate the m max a · 

instants at which u(x) =0.5 umax (xa <xm' xb 

> x ). For v < p. we have 
m 

1 [ r e:2 
7i = 0,144Ll I+JI 1-3,74 ~]; (13) 

1 [ e:2 J k = 0,289Ll 1-0,935 ~2 for ~ < 0.2; (14) 

(15) 

[ 3,115]. jxm! = 0,3538 1-~ , 

(16) 

where 11 = xa + xb is the half-width of the signal 
and f = (I xa I - I xm I) - ( xb + I xm I) is a measure 
of the signal asymmetry. 

As in Ref. 10, using Eqs. (13)-(16), it is possi­
ble to determine the transverse relaxation time T 2 
from a knowledge of the half-width and asymmetry 
of the signal; also, if the strength of the modulat­
ing field Hm is known, the amplitude of the high­
frequency magnetic field H 1 can be found. We may 
note that this method can be used only when the 
high-frequency magnetic field H 1 is sufficiently 
homogeneous over the region of the sample; if 
there are any homogeneities, 11 and f become aver­
age values determined by the different environ­
mental conditions in the various parts of the 
sample. 

2. ASYMMETRICAL MODULATION 

Experimentally it is necessary to vary the time 
interval htween the signal pulses which occur as 
the magnetic field is modulated5 •11 • Under these 
conditions the magnitude of the de magnetic field 
differs from the resonance value, i.e., Hz is of the 
form 

Hz= H0 + H m (x +sin x), (17) 

in which x. can have either sign depending on the 
sign of He. 

For asymmetrical modulation the shape of the 
dispersion signal is given by Eq. (2). We are in­
terested only in the steady-state solution. In order 
to find this solution it is necessary to compute the 
integral I= H (Tf)- H (x) [ cf. Eq. (2)]. 

Using certain approximations it is possible to 

find I. It follows frotn Eq. (17) that the magnitude 
of the displacement term H must be smaller than 

c 
the modulation amplitude Hm. Since it is always 
true that x.;;; 1 we may make the substitution x. 
=sin t/;. It also follows from Eq. (17) that the 
resonance conditions obtain when x rv- ·'·. We 

res = 'fl 
divide I into two integrals I = I 1 + I 2 , where 

~-4 ~ 

II=~ [G(~)r2d~; I2= ~ [G(~)r2d~_(18) 
~ x-4 

If the half-width of the signal 11 is small, then I 1 

can be computed by expanding sin x in a series 
about the resonance value. 

(19) 

where p = k cos tj;. 
Substituting I 1 and I 2 in Eq. (2), dividing the 

X 

integral f into two parts as in the symmetrical 
-oo 

case and keq>ing only the part which is of import­
ance in the resonance region, we get 

G (xT) 
Ust (x) = Ust (xT) G (x) exp {F (xT)- F (x)} ,(20) 

where 

F (x) ='IX+ fL -v arctg [p (x + ~)]. 
p 

Comparing Eqs. (8) and (20), we see that the 
more exoct symmetrical-modulation solution (8) 
will have the same form as (20) when tan x 

~ x, y 1 + k 2 ~ k, i.e., for sufficient! y large val­

ues of k and small values of x. In ~he asym­
metrical-modulation case the role of the parameter 
k is played by the quantity p. 

Using the analysis developed in Ref. 10 we can 
now examine Eq. (20); when v < f1 (the notation 
is the same as that used in the symmetric-modula­
tion case) we have: 

1/p = 0,144Ll [I+ VI-3,74(82/Ll2)]; (21) 

Ijp = 0.289/'l. [l-0.935c2/Ll2 ] 

fur c/Ll < 0,2; 

~ 
(Xm + ~)2 = 0,461 p [1-3,464/Llp], 

I Xm + ·~ I = 0,353c; 

(22) 

(23) 

(24) 
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I 

2 

3 

FIG. 2, The change in the shape of the dispersion 
signal as the quantities v and 11 are varied. These 
pictures were obtained with water solutions as follows: 
1-0.001 molar CuS04 , 2--0.02 molar Fe(NO 3 )3 , 

3 -molar CuS04 , 4 ··2m alar Fe ( N03)3 ; fm =50 cps, 
Hm = 19 gauss, H 1 = 1 gauss. The values of V and 
11 are, respectively: 1 --0.0035 and 6.9; 2 •• 0.57 and 
10; 3--3.7 and 17; 4--59 and 78. 

Equations (21)-(24) can be used to determine the 
transverse relaxation time T 2 and the amplitude of 

the high-frequencymagnetic field H 1 when the 
signal pul~;e does not fall at the center of the os· 
cilloscope pattern. Comparing Eqs. (21)-(24) with 
Eqs. (13)-(16), we see that the expressions are 
identical up to terms of the order of k" 2 • 

An estimate of the limits of applicability of Eqs. 
(21)-(24) shows that these expressions are accur· 
ate to within lO per cent for values up to x 
= 0.65 (A: = 20) and up to x = 0.5 ( k = 10 ). 

It is still necessary to verify that the expressions 
given above for symmetric modulation Eqs. (13)­
(16) and asymmetrical modulations Eqs. (21)-(24) 
are being used in cases for which the experimental 
values of 11 and v lie within the limits of the 
regions shown in Fig. 11. We may note that in asym­
metrical modulation the parameter p should he 
used in steal of k in Fig. 1 and the regions 11 ( v) 
should be compressed as xis increased. 

EXPERIMENTAL RESULTS 

The theoretical results obtained in Sees. 1 and 
2 were checked with an electrically compensated 
crossed·eoil setup. Proton resonances were 
studied in all cases. The experiments were per­
formed in distillal water, aqueous solutions of 
varying concentrations of CuS04 and of Fe(N0 3 ) 3 , 

paraffin, glycerin and various types of synthetic 
rubber. 

It has been shown above that the form and mag­
nitude of the dispersion signal for a strong high­

frequency magnetic field are determined by the 
values of the quantities T 1 , T 2 , H 1 , H m' wm and 

He. If for a given value of k, the values of v and 
11lie within the regions shown in Fig. 1, then the 
signal is bell-ffiaped and is given by Eqs. (8) and 
(20). On the other hand, if the value of v corre­
sponding to thisvalue of k is outside the region, 
then the effect of the quantity f (x, x T) becomes 
important and the curve is distorted. 

The oscilloscope photographs shown in Fig. 2 
illustrate the change which takes place in the 
dispersion signal when v and 11 are increased. These 
photographs were made with aqueous CuSO sol u­
tions and Fe (N03 ) 3 solutions under the folfowing 
conditions: fm =50 cps, Hm = 19 gauss and H 1 

= 1 gauss. The corresponding values of v and 11 
are given for each photograph. The theoretical 
predictions regarding the dependence of the signal­
shape on v and 11 are borne out in these photo­
graphs. 

To verify the functional dependence of the 
half-width 1'1. on k, given in F.qs. (14) and (22), we 
found the experimental dependence of this quantity 
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FIG, 3, The signal half-width Ll as a function of the 
ratio of the high-frequency voltage in the driving coil 
to the modulation current; this ratio is proportional to 
1/k. 

on the ratio VL I I , which is proportional to 1lk 
1 m 

( VL 1 is the amplitude of the voltage in the driving 

coil and is proportional to H 1 • I m is the current in 
the modulating coil and is proportional to H m 13 ). 

This dependmce is shown in Fig. 3 which was ob­
tained using a 0.064 molar solution of CuSO 4 with 
v = 0.26, ll = 7.1 and E/Ll < 0.2. 

The strong-field case ( ..\ < 1 ), which is the sub­
ject of this paper, is realized experimentally when 
VL/ I m > 30. It is apparent from Fig. 3 that for 

VL I I < 25 the half-width Ll increases in propor-
1 m 

tion to VL I ; this is in agreement with the theo-1 m -

retical prediction. The region VL 1 I I;;;< 10, in 

which the quantity Ll remains constant, corre­
sponds to the weak-field case ( ..\ > 1 ); here, the 
width of the signal, as is well known 3,4 ,14, is 
determined by the transverse relaxation time T 2 
and the modulation rate is independent of the 
strength of the high-frequency magnetic field H 1• 

An experimental investigation was also under­
taken to determine the dependence of the half­
width Ll on the position of the signal on the oscil­
loscope pattern in the asymmetrical-modulation 
case. 

A typical curve is shown in Fig. 4 which was ob­
tained using a 0.064 molar solution of CuSO 4 

with fm =50 cps, Hm = 19 gauss and H 1 = 1 gauss. 

It is evident from this figure that the quantity 
Ll cos t/1 remains constant to within 5 percent; thus, 
within experimental errors, the changes in the 
signal-width owing to variation in position on the 
oscilloscope pattern are given correctly by Eq. 
(22). 

In conclusion, the author wishes to thank Profes· 
sor S. D. Gvozdover for valuable advice in the 

tJ cost; 
Ll 
aJ 

0.2 

at 

FIG. 4. The signal half-width Ll as a function of 
position on the oscilloscope pattern. 

[s 1!S=I/20+x.>L re 

course of this work and also E. G. Pozniakii, A. V. 
Luk'ianov and T. M. Cherkasov for undertaking the 
numerical integrations. 
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