
SOVIET PHYSICS JETP VOLUME 3, NUMBER 6 JANUARY, 1957 

On the Effect of Radio Waves on the Properties 
of Plasma (Ionosphere} 

A. v. GuREVICH 
Scientific Research Institute for Terrestrial Magnetism 

(Submittea to JETP editor April.6, 1955) 
J. Exptl. Theoret. Phys.(U.S.S.R.) 30, 1112-1124(June, 1956) 

A successive method is developed for determining the electron-velocit~ di~tribution . 
function in plasma in an alternating electric field and_a constant ma~et1c held, ~summg 
the collisions between the electrons and molecules or Ions to be elastic. ExpressiOns ar~ 
derived and analyzed for the mean electron energies, for the conduc~i':ity and the dielectnc 
constant of the plasma, and for the effective nurllber of electron colhswns. 

1. INTRODUCTION 

I F an electromagnetic wave is propagated in the 
ionosphere, the intense alternaing electric field 

of the wave may change substantially the energy of 
the electrons, and consequently the conductivity 
and the dielectric constant of the plasma. To 
evaluate these changes, one must first determine 
the electron-distribution function. 

Considering only the elastic collisions between 
the electrons and the heavy particles (molecules or 
ions) of the plasma we know that with each collision 
the electron loses only a small portion of its 
energy [on the order of O= 2miM, where m is the 
electron mass and M the molecule (or ion) mass J. 
It is therefore possible to obtain the distribution 
function in a simpler manner by representing the 
collision integral in the Boltzmann equation in 
differential form. Furthermore, since o is small, 
the mean square velocity of the electrons is many 
times greater than the mean directed velocity even 
in strong electric fields. The symmetrical portio.n 
(which depends only on the modulus of the veloctty) 
of the distribution function is correspondingly much 
greater than its asymm~tr~c p~r~ion. Ta~ing. these 
into account, Davydov stmphfted the kmettc 
equation considerably and solved it for the case 
of stationary electric and magnetic fields. . 

In nonstationary fields the electron energy ts 
changed directly only by the electric field. Thus, 
depe~ding on the ratio between the time t E re­
quired to -change substantially the electric field 
(for example, if E = E 0 cos w t, t E"' l I w ), and 
the relaxation time of the electron energy 
(t ~ l I o 11, where 11 is the collision frequency 
of the electron), it is possible to distinguish 
among cases in which the fields vary slowly 
(tE >> tr)or rapidly (tE << tr). In the former 

(quasi-stationary) case the solution obtained in 
Ref. l for a time-dependent electric field intensity 
E is correct. In a rapidly-varying field, when 
tr >> tE the mean electron energy Cfllnot change 
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as fast as the electric field; the symmetrical 
portion of the distribution function should there­
fore be stationary, to a zero-order approximation. 
Let us also note that since the current relaxation 
time t i is much smaller than the electron relaxa­
tion time tr, because t; "' II 11 << o 11"' tr , 
the ratio between t E and t i affects the nature of 

the distribution in rapidly-varying fields (tE < < tr). 
The case where the electric field varies periodi­

cally with time is discussed inRefs.2 and 3 (in the 
absence of a ma~netic field) and in Ref. 4 (assum­
ing a constant m~gnetic field). However, owing 
to incorrect solution methods, some of the results 
obtained of References 3 and 4 are in error (cf. 
below).* An analogous problem was also solved 
in an analysis of the cross-modulation effect of 
radio waves in the ionosphere, where corrections 
were derived for the Maxwell distribution function 
for the case· of a relatively weak alternating 
electric field, when the energy delivered by the 
field to the electrons is much less than their 
thermal energy (Refs. 6 and 7 and Sec. 64 of Ref. 8). 

The purpQse of this article is to solv~ the . 
kinetic equations, assuming an alternatmg electrtc 
field and a constant magnetic field (without the 
above-mentioned restrictions on the field intensity), 
and to analyze the expressions for the conductiyity 
and the dielectric constant of the plasma. Sectwn 
2 discusses the method for calculating the distri­
bution function, really an expansion into a series 
in powers of the parameter tE I tr (for rapidly 
varying fields) or trItE (for slowly-varying 
fields). A zero-order approximation is obtained 
for the distribution function. In Sec. 3 we obtain 
and analyze expressions for the average ele.ctron 
energy and for the conductivity fll.d dielectric con­
stant of the plasma. In Sec. 4 we investigate the 
possibility of using in our calculaions the value.s 
off and a obtained from elementary-theory equations. 

*The exp-ession for the distribut.ion functio~, 
derived in Ref. 4, was corrected by 1ts authors m a 
later work 5 (see footnote 3 ). 
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We show that in the case of collisions with mole­
cules the use of these equations leads to but a 
slight discrepancy with the results of the kinetic 
theory. Generally speaking, this discrepancy is 
more significant in the case of collisions with 
IOns. 

Estimates show that in many cases the incident 
wave may change substantially the average electron 
energy and the properties of the plasma. 

2. CALCULATION OF DISTRIBUTION FUNCTION 

Consider a spatially-homogeneouS' pl!Ema located 
in an electric and magnetic field. We assume the 
collisions between the electrons and the molecules 
or ions of the gas to be elastic. The electron 
distribution function 

f(v, t)=f0 (v, t)+ ~ f1(v,t)+x(v,t) 

obeys in this case the following approximate system 
of equations, derived in Ref. 1: 

iJ/0 e a ( 2Ef) 
7ft + 3mv2 av v 1 

(1) 

__ 1_ fv v 2kT iJ/0 + v 3m f} _ O 
v 2 \ M iJv v M o - ' 

iJfl + ~ a to + _e_ [Hf ] + vf = 0, (l ') 
at m iJ·v me 1 1 

wherein terms on the order of X were neglected in 
the derivation of Eq. (1). (As shown in Ref. 1, 
X"' VSj {1 I "' o {0 ). The normalization condition 
for the distribution function is 

0) 

4n ~ fo (v, t) v2 dv = 1. (2} 
0 

In Eq. (1) e is the electron charge, k the Boltzmann 
constant, T the plasma temperature, E and H the 
electric and magnetic field intensities, and v (v) 
the frequency of collisions between the electron 

and the molecules (or ions). In the c!Ee of colli­
sions with molecules, we have 

(3) 

where a is the "radius" of the molecule and N M 
the molecule concentration; in the case of colli­
sions with ions, on the other hand, we have (see 
Ref. 8) 

2rrJV.e4 ( p2 m2 ) 
v (v) = 2 ' 3 In I+ __:;..-. v4 , 

m v e (3 ') 

where Nf·· i~ the ion concentration, Pm is the maxi­
mum col 1sron parameter, which can be CBsumed to 
equal the De bye radius 8 (at frequencies that are 
not too high). 

Let us now assume that the electric field 
varies rapidly, i.e., tE << t,. In this case the 
solution of Eq. (1) can be solved by successive 
approximation: 

f 0 ( v, t) = f uo + f 01 + . . . ' (4) 

f1 (v, t) = f10 + f11 -+-- ... 

Neglecting in the zero-order approximation the 
variation of the distribution function due to the 
collisions (on the order off It ) as compared with 
the first term of the equation (a f I a t "'fIt E ), 
we have a f 00 I at = o or 

f 00 = f 00 ( v) , (5) 

i.e., in the zero-order approximation the symmetri­
cal portion of the distribution function is indepen­
dent of time (see Introduction). On the other hand, 
tlte dependence of f 00 on v is determined, as it 
should be, not by the equation for the zero-order 
approximation (4), but by the requirement that the 
boundary conditions for the next (first-order) 
approximation be satisfied (see below). 

Ins~rti~g now (5) into (1 '), we obtain [10 (the 
electric freld is assumed for simplicity periodic, 
E = E 0 cos w t, and the magnetic field H is assumed 
constant): 

flo= _ ~E0 df00 { (iw + v)2 (E0 ; E0) + w~ cos~ (HI H)+ wH (iw+ v) [HE0]1HE0 e wt 

2m dv (iw + v) [w~ + (iw + v)2] 

(6) 

(- iw + v)2 (E0 I E0) + wJ.J cos [3 (HI H)+ w H ( -Zw+v) (HE0]/H E~ \ + -----------=~-----~ __ _____.:.____::.:____::__ e-iwt 
(-iw+v)[w~+(-iw+v)2] j' 

where Wn=eH/mc is the gyromagnetic frequency, 
and f3 the angle between H and E . 

Next, inserting {00 and [10 into0the eqiation for 

the first ap~roximation {0 1 and integrating it with 
respect to trme, we obtain in expression for~ 
the following term 0 1 
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2f:2 
~f - __!_ l__ {' 2 ( e -o ,, dfoo 

01 - 2V 2 OV IV 3m";) y (v) dv 

+ kT d/00 + f )} t 
m dv v oo ' 

which increases without limit as t .....00 • Stipulating 
the existence of the distribution function, i.e., the 
boundedness of [ 01 at t.....OO, we set the expression 
in the braces equal to zero, and obtain 

{ 
( mv dv \ (7) 

foo = C exp - hT + (e 2I::~ I 3m8) 9 (·v)J • 
0 

Here 

cos2 [?> 
r:;(v)- --. - w2+v2 (7') 

and the constant C is defined by the normalization 
condition (2). Thus a unique solution to the sys­
tem of equations (l) is obtained only by satis­
fying the supplementary condition that the solution 
be bounded at t ->OO. 

lnt~rating the equations for {0 1 and {11 with 
respect to time, we can obtain the following ap­
proximation (with accuracy to within a time­
independent function, which is determined by 
specifying that f be bounded at t -->00 ), etc. 
Comparing the sJltcessive terms of expansion (4) 
we find that in case of collisions with molecules 
the resultant expressions are correct provided the 
following condition is satisfied 

1,5 8v0 (l + e£0 !-'-)''• 
w v0 V 6kTm8 

(8) 

,_, 1,2·10-HNMVT (t -1 4·1016~ )''•_..-;:::--1 
,_, w -t ' JV MT p. ~ ' 

where v0 = v and f1 ~ l, namely: 

cost' + sm2 ~ 0 0 

w~ 'V3kTm3 1 
1-1 • 'V2v eE 

if 

p.= 

In the numerical coefficient we assumed 
o=3.4 x 10·5 and rra 2 = 4.3 x l0-16 (see Ref. 8); 
E 0 is in millivolts per meter. 

In case of slowly-varying fields, reversing the 
inequality sign in (8) we obtain for f and (1 
the expressions similar to (6) or (7) b~rwith E0 

being replaced by y 2 E 0 cos w t in f 00 • Thus 
we have 

v 
(9) 

f = C (f) {- (' ln'UdV l 
oo exp ) kT + (2e2I::02 1 3m8) q:> (v) cos" wt J' 

0 

where the constant C (t) is determined by the nor­
malizaion condition (2). For w t -0, i.e., for 
E -E 0 , the distribution function (9) agrees with 
that obtained in Ref. l for the stationary case. 
At H -0 the distribution function (7) agrees with 
that obtained in Refs. 2 and 3. However, (9) 
does not agree with the function obtained under 
the same conditions in Ref. 3 (Section 7 ). In 
connection with this let us note that Refs. 2 and 
3 attempted to solve Eqs. (l) by expanding them 
into a Fourier series, and although this led to 
separation of the variables, it also resulted in an 
infinite system of interrelated differential equa­
tions. Since general analysis of such a system 
is exceedingly difficult (the termination method 
was used in Reference 3, but the authors of 

if 

this article did not investigate fully the condi­
tions under which this method is applicmle, * and 
therefore the results they obtained for the case of 
low-frequency fields (Ref. 3, Sec. 7) are not 
quite correct, even though the distribution ob­
tained in Refs. 2 and 3 for rapidly varying fields 
does not agree with (7). Let us note that Ref. 3 
investigaed not the approximate system of Eqs. 
(l) , but a complete infinite system of 
equaions, equivalent to the 3oltzmann equation. 
The method developed in this article can also be 
used to solve that problem. The distribution 
function (7) does not agree with that obtained in 
Ref. 4. ** 

In the case when the principal role is played 
by collisions between electrons and ions, expres-

*The attempt to approximate c, made in Sec. 5 of 
Ref •. 3.(from Sec •. 3 of the.same reference) is rwt . 
sufhc1ently consistent: mstead of function f on. wh1~ 
should be obtained in this apfi'oximation, funcnon foo 
was used (approximation c , Sec. 3 ), which is incorrect 
within the framework of the method employed. 

**Recently t~e authors of that reference deri~d a 
?orre~t expressiOn for the distribution function, agree-
1~g ~1th .(7). The .same expre~sion was derived for the 
d1stnbut10n f.unctwn by Fain. The kinetic equations 
were solved m these investigations as in Ref. 3. Fain 
als.o investigated the applicability of this method and 
arnved at a condition that is equivalent to (8) (see 
also Ref. 10). 



898 A. V. GUREVICH 

sion (7) is valid for the distribution f1111ction if 
the following condition is satisfied: 

(V2/ 3eE0 jwfkTM) + o''oijw<:;_ 1. (lo) 
Neither the question of obtaining the distribution 
function in case of collisions with ions when 
conditions (10) are not satisfied (stationary and 
quati-stationary fields), nor gyro-resonance are 
cons.idered in this article.* 

The solution above is for a plane-polarized 
electric field ( E"" E cos cut ). However, in 
anisotropic plasma (fll= 0), the plane electro­
m~netic wave breaks up into two elliptically­
pol~rized waves. It is therefore interesting tb 
determine the electron distribution function for 
the case. of an elliptically-polarized electric 
field E. Resolving E along the three principal 
polarization axes we have 

E = E 11 0 cos wt + E10eiwt + EJ:'0e-iwt 

(E 11 is the plane-polarized field with E 11 II H; E 1 
md E,iare the circularly-polarized fields in a 
plane perpendicular to H and rotating in the same 
(minus) or opposite (plus) direction as the electron 
in the magnetic field), it is easy to show that the 
same expression (7) is valid for the distribution 
function, provided that E 2 Cf! ( v) is reploc:ed by 

£2 0 
E2oq;;·(v) -> _1_1 o_. (ll) 

, w2 + v2 

In particular, if the field is circularly polarized in 
a plane perpendicular to 1!, it can be seen from 
(ll) that the effect of the magnetic field is actually 
equivalent to an increase (or decrease) in the 
frequency of the electric field, a physically under­
standable effect. 

3. MEAN ElECTRON ENERGY, PLASMA CON· 
DUC'IlVITY AND DIELECTRIC CONSTANT 

Using the expression obtained above for the dis­
tributio!!. function, let us compute the mean electron 
energy S,. and the plasma conductivity a and die­
lectric constant (. Integrating the expressions for 
the mean energy and for the electric-current densi-

ty with respect to the angular variables and em­
ploying t.he orthogonality of the functions f 0 , f 1 ' 

and X we obtain 1 

co 

<f)= 2v:m ~ v4f0dv; 
0 

(12) 

co 

• ( . . z- 1.) E 4rreN ~ f J= cr-rtw~ =--3-j v3 1dv. 
0 

Usirig the Hermite properties of the tensors ( 
and a and aligning the z axis with the magnetic 
field, we obtain from (12) and (7) the following 
expression for the components of the tensors ( 
and a: 

(12 ') 

Exz = Ez.~ = Eyz = 8yz = 0, 

*The many difficulties arising in the analysis of the 
distribution function n stationary fields in case of 
collisions with ions were pointed out to the author 
by V. L. Ginzburg. I take advantage of this opportunity 
to thank him for attentive examination of the results 
of this investigation. 

where a dimensionless variable u = v y 2 k T / m 
was introduced; 

--- u4 
u=vV2kTjm; F=foo ; f d 

1 + (e~E~ (3kTml)) <p oo an Cf! 
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ll'e given by expressions (7) and (7 '). In the 
absence of a magnetic field, it can clearly be seen 
from (12') that axy =ayx = 0 and oxx = ayy=azz 

=a, with analogous relationships for f . 
a) Magnetic field H = 0. In the absence of a mag­

netic field (for collisions with molecules) we ob­
tain from (12): 

where 
00 

I (X) 1 C e-t'-2f.r fP dt 
P = r (p + 1) J 

0 

if X >> 1 

e·<'/2 

2(P+1)/2 

(13) 

(14 ') 

I P (x) = (2x)-P-l { 1 - (p + 1) (p + 2) 1 (2x)2} 

(here D h ( z) are the parabolic- cylinder functions)· 
and 

x = V3 uhn Vfl 27r.a2 N Me£0 = 660 {t}2 I E0N M 

(x is on the order of ( w I v )2 , where v is the 
electron collision frequency in a strong electric 
field). The functions I P ( x) are plotted in Fig. l. 

According to Eqs. (14) and (14 '), 2, increases 
monotonically with E 0 and T and decreases mono­
tonically with w and N M • If x > > 1 (high fre­
quencies) we obtain from (14) and (14 ') : 

(fJ = ~ kT (1 + 1 I q2 ), 

cr= _s_ e2Nvo (1 + I 2)'!, 
3 V ;:t mw2 1 q ' 

e:-1 e2N 
~=- mw2 ' 

Here W 11 A ( z) is the ~ittaker function of order 
11, A; to's implify the notation we again introduce 
the dimensionless parameters 

e21:~ ~ 3,4·1032 1:~. 
1 = -- (13 ') 

3kTm3v~ N~T2 

q = ~; v0 = v2kT na2N M~2,36 ·10-10N MlfT, 
v0 m 

where y is a quantity on the order of the square 
of the ratio of the energy delivered to the electron 
by the constant field Eo to its thermal energy; 
v is a frequency on the order of the number of 
efectron collisions in the absence of an electric 
field. In the numerical coefficients we assumed 
o= 3.4 x 10·5 and rr a 2 = 4.3 x 10·16 cm 2 ; 

E0 is in millivolts per meter. If y » I we have 
from (12): 

(14) 

In this case the distribution function is Maxwellian 
with an effective electron temperature 

T,q, = T ( 1 + l 1 q2 ) = T ( 1 + e2E~ 1 3kTmo{t}2 ). 

If x << 1 Oow frequency): 

r (5 I 4) eE0 

v~~ r (3 I 4) Va 7ta2N M' 
(15) 

y,t ·Ne'1•a'!, N 
cr- =1,5·1010 v ·' 

- 2'1•;)'1• r(3/4) V 7ta2NMmti0 NMfio 

e: -1 2r {"/4 ) eN3' 1• 
~ --- V3 r (3/4) rr:a 2NMEO 

N 
=- 1,67·1011 --. 

NMEO 
In this case the distribution function is of the 
Druyvesteyn type with an effective field E e f. 
= E 0 I ...;T, as it should be, for if x << 1, i.e., if 
w < < v, the alternating electric field acts o~he 
average as a constant field E = E ef = E 0 I y 2. 
Let us also introduce corrections for the expressions 
fort', a, and fin a weak field (y « 1 ). If 
w2 > > vg we have: 

(/) = ~ kT(l +1/q2 ); 

8 e 2Nv 
cr = :-----'= - 0 (1 + 11 q2)'1•; 

0 V rr: mw2 

( s - I ) I 4n = - e2 N 1 mcu2. 
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FIG. I 

If w2 << v~ 

d)= ~ kT(1 + 2 / 3 'f); 

4 e2N 
o = --==- [1- 2'( (1 -ln 2)]; 

3 V TC fllVo 

Ip(x) = (2x)-P-I{l-(p+ 1)(p+2)/(2x)2} 

Figures 2, 3 and 4 show plots of S, a, and 
(f -I) I 477) (related to their values a E -+0) vs. 
q = w I '6 for various values of y . It is clear from 
the figures that at y > > l the mean electron energy 
and plasma conductivity and dielectric constant 
depend strongly on the electric field intensity. It 

FIG. 2. Dependenc_Lgf 2; 2 E=O on q = wlv 0 
= 4.24 X 10 9 wl N MY T for the values of y indicated 
on the curves, and for w 8 1v 0 = 10. Solid lines are 
for {3 = 0, dotted for {3 = 1712. 

is interesting to note that at low frequencies 
(x < < I ) , a de creases with increasing E 0 and the 
mean electron energy increases, and with it the 
energy delivered the wave to the plasma molecules 
(see Eq. 15 ). If we assume here tha the absorp-. 
tion of radio waves is proportional to the conducti­
vity, an apparent contradiction arises: the energy 
delivered by the wave to the plasma molecules 

increa;;es with the field in a strong low-frequency 
field, and at the same time the absorption of the 
wave decreases. This, however, does not contra­
dict the law of conservation of energy, for the 
energy -of the wave increases as the square of 
E 0 , while the mean energy of the plasma electrons 
is proportional toE 0 [(from (15) ]. Consequently, 
even though the total energy delivered by the wave 
to the plasma molecules increases with E 0 , its 
relative value decreases; therefore, the absorption 
l'lso decreases, and exhibits a relative decrease in 
the ampliltude of E on the given section of the 
pah. 

_k}_ 

( E-!)E•O 

1 

--f-- f :J 

0. 
f.-< 1-v 

! 
F=;::=f-

-t- 1-- ...... -.-_ 

~'--

'= f---= f-=+ ;= 
ao 

~~----

. :p-·~ -1~'-
+- .,.. 1---r--

y ;,-~=t t= 
X--t-- ./ / ; __;____;___;_ f-

l,( ?i l/ J I I I 
!0 '11 I i i 

- ; - t- c= 
f-- ~r:::R- T ' ±:::!= 

t--H-:-=;:_t-+-

· , 1 rH_~ / 
r= :±__ ~f+=:t=~ 

' +--~-c -~1--

i I 

I I 
0,00! -0,5 0 +0,5 I Lgq Z 

F!G: 3. D.ependence of (f-1 I ( f-1 ) E=O on q for 
colhswns With molecules at H=O for various values 
of y as ma.rked on the curves, 

Let us also note that the probability of the 
electron having a.n energy greater than the pre­
scribed value of 2,0 is given by the following 
equaion 

<'o 
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where v0 = y 2 E: I m . It is now easy to obtain 
an expression for P ( 2;: 20 ) for various limiting 
cases. In particular, fer y >> 1 we have 

co 

/,;,(to, x) = v~ ~ t'!. exp {- t 2 - 2tx} dt; (16 ') 
t, 

0 

io = C<:Jo 
2kTx(1 +r/q 2 ) 

It is clear from (16) and (16 ') that in a strong 
field the electron energy is less likely to deviate 
substantially from its mean value 2, at low fre­
quencies than at high frequencies. 

b) Magnetic field H I= 0. If the effect of the 

constant magnetic field is taken into account, the 
computation of E, a, and f is in general much 
more complicated; however, in some particular 

instances it is possible to convert the expressions 
for S, a, and f to those discussed above by intro­
ducing effective parameters E;, u/, which take 
the m~netic field into account. 

6 
6[-0 
10 

-

o.z 
J 

211 

I'~ 

/0 

I I 

_, 
0 z 

FIG. 4. Dependence of alaE_,O on q foc collisions 
with molecules ( at H = 0) for the various values of 
ymarked on the curves. 

It is evident that if f3 = 0 ( f3 is the angle be­
tween E and H) the magnetic field does not affect 
the symmetrical portion of the distribution function. 
Consequently, the average electron energy, and 
also the components of the conductivity and 
dielectric constant tensors (azz, fzz ), which are 
pa-allel to Hare given by the expressions analyzed 
previously (E ~ = E 0 ; w '= w ). For the remaining 
components of tensors a and f we obtain the some­
what more complicated expressions (12). In 
severallimiiing cases they can be simplified. 
For example, if y >> 1, x >> 1, and 
x ( w - w H )2 I w 2 > > 1 the expressions for 
axx etc. are the same as obtained in the weak-

field theory [ with the temperature replaced by its 
effective value T e f , as given in (20) ] , namely; 

_ _ 8 e2 N" 1 Gxx- Gyy- ,;'- __ _Q _ 
3rrr m ~ 

"xx- 1 
4rr 

(17) 

The magnetic field affects the electron distribution 
most when f3 = rr I 2. In this case we have for 
y > > 1 and x ( w + wH ) 2 1 w2 > > 1 

(fJ = Jk=o (E~, Ul'); 
(18) 

Exx-1 _ Eyy-1 
4rr - 4rr 

V-I { 2 2 - eN kT3 •!, (x') w - wH 
= - V 6 -£, ----,;- I (x') (w + w )2 

"o o '/, H 
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If, on the contrary,x (w1 + wH)2jw2 ~I, the effect 
of the magnetic field is insignificant; for the 
mean energy of the electrons and for the diagonal 
components of tensors a and f ( axx = ayy =azz• • .) 
we have E ~ = E0 ; w '= w . The· remaimng com­
ponents have the following form: 

(19) 

e:XY. e:YX 
--;;m- =- 41t" 

. 2f(5/ 4 } wH eNV3" = t -=,--'--'.:.:_ 

V3f(%) w Co1t"a2NM 

Figures 2 and 5 show plots of the functions f 

and axx (at {3 = rr/ 2) vs. q = w/v0 for wH /v0=10 
md for various values of y . The mean electron 
energy E / E E=O' is seen clearly from (18) and 
(18') to increase resonantly in the vicinity of 
the gyro-frequency [ w "" w , compa-e (13) ] ; 
this resonance is observed wFten the following 
conditions 1 »I; x (wHfw)2::;y I, are satisfied, 
as can also be seen from Fig. 2. Under these 
conditions a/ a E =O decreases resonantly (see 
F1g. 5 ), while at w = wH increases, and E de­
creases with increasing E 0 , the same as at low 

o;6, 
tO £=0 

f 

- -. r-. fl:: ·fOZ 

i j 

-1 0 z 3 !gq 

FIG. 5. Dependence of a/ a F. -n on q ((_:ollisions 
ith molecules for w/ v = lOan<f for vanous values 

:f y marked on the curve~. Solid curves are foc {3=0, 
dotted for {3 = rr/ 2. 

frequencies in the absence of a magnetic field 
(see Eq. 15). 

Let us also note that the case {3 = rr /2 also 
occurs for longitudinal propagation of the electro­
magnetic wave. The wave breaks up here into 
two waves - ordinary and extraordinary- circularly 
pola-ized in a plane perpendicular to H . For each 
of these waves, as can be clearly seen from (11), 
E' = E ./2. ; w '= I w ± w~ I . Comparing (19) 

0 0 y ' ' . f' . with (18) and (18 ) we see t at m 1rst approXIma-
tion both circularly- polarized waves, which make 
up a plane polarized wave, exert an equal effect 

of the electrons in al~cases except gyro-resonance 
(w"" wH, x ( wH / w) > > 1 ). In the case of 
gyro-resonance, however, the increase in electron 
energy is due only to the extraordinary wave. 

If angle {3 is arbitrary and the following condi­
tions are satisfied 

the distribution function is Maxwellian with an 
effective temperature 

, { e2 £g [ cos2 [1 
T 9q,= T I+ 3kTm'f3 ~ (20) 

.L sin2(3 (w2 + wi-J) J 1 

' (w2- wi-J )2 j ' 

i.e., the same expressions hold for r' a' and ( 
as for weak fields, except that T is replaced by 
T f ( see Eq. 17). Let us note that the electron 
g!s also has this effective temperature (20) in case 
of collisions with ions, provided the following 
conditions are satisfied. 

(21) 

Here v 0 i is on the order of the fre~uen~y of 
collisions between electrons and Ions m the ab­
sence of an electric field. If x(w + w H) 2 « 1,and y» 1, 
the distribution function (in case of collisions 
with molecules is of the Druyvesteyn type with 
an effective field Eef = E0 / yc1; expressions 
(15), (19) are valid for ~. E, and a . 

4. EFFECTIVE FREQUENCY OF ElECTRON 
COLLISIONS 

The expressions for a and f obtained above with 
the aid of the kinetic theory are in general quite 
complicated. It becomes therefore adva~tageous 
to investiigate the possibility of calculatmg a and 

f from the elementary theory equations: 

(22) 

~ _ 1 _ 47te2N ___ _ 
~(el)- m w2 + v2 ' 

e¢> 

For this purpose it is necessary to determine the 
effective electron-collision frequency (vef) and to 
compare the values of the conductivity and dielec­
tt·ic constant (ael• Eel) from Eqs. (22), with 

those ( ak, f.k ), obtained from kinetic theory. . 
Let us first consider the case of a weak electnc 
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field(e 2 E 2 /3kTm8(w2 +v02 « l),when the 
effect of t~e wave of the plasma can be neglected.* 
Here, as is well known, it is possible to determine 
the effective electron-collision frequency ve{O at 
high frequencies ( w >> v 0 ) in such a way that 

H 
l.ti 

If q 
FIG. 6. Dependence of Ka and Kf: on q for collisions 

with molecules. The dotted Jines show curves for 
strong electric fields (at y= 105 ). 

/( .-.-- -:-;--r-o 

!'-- I 
~ !0 

1-t- t-·-7--- t-, 

' I 

JH6' r-"' j\.1 '\ K 
/( 
c, ! 

-···l,:t.:== j::=: 

-C~-=±E 1= 
t-

I 
I i - .--i . 1-Tl-1 

-ll 
0 

FIG. 7, Dependence of Ka and K( on log qi for 
collisions with ions. 

J 

. .fiG. 8 .. Dependence of Vef (cu)/ve[O on q for col­
hslons w1th molecules. 

the conductivity and the dielectric constant, cal­
culated from the kinetic theory and from Eq. (22), 

*Let us note that the weak-field condition specified 
here is valid in the case of collisions with ions only 
if cu ~ voi • 

are in agreement (see Refs. 11-13): 

H 
'~9<P o = -~-- '~o (22 ~ 

3l' 7': 

sV·T vkT ry = ~ -7:a"N.w (for collisions with molecules) 
3V1t m 

4 
'I94J Oi = v- '~oi 

3 7t 

2 V21t e4N; I ( (kT)S l . . . . 
- 3- m'l• (kT)'f, n l 21tN;e"{ (for colhswnsw1th wns). 

If the condition cu > > v 0 is not satisfied then 
ael and lez no longer equal ak and t:k. It is 
therefore necessary to introduce correction 

coefficients Ka and Kt: , which are determined in 
the following manner: 

:JK = Ka:19n; 8K- 1 = Ke (E9.o- I). 

The coefficients Ka and Kt: plotted in Figs. 6 
and 7 are functions of the frequency. In the 
case of collisions with molecules (Fig. 6) the 
correction coefficients Ka and Kt: are nearly equal 
to unity; on the other hand, in the case of colli­
sions with ions (Fig. 7) they may differ con­
siderably from unity (atcu~lO v 0 i ),*and this 
circumstance must be taken into account in the 
calculation of the conductivity and of the dielectric 
constant. 

In a strong electric field, Kef can be obtained 

from effective electron gas temperaure T e f . In the 
case of collisions with molecules we have here 

vef = vefo yTef / T, where Tef is determined by 
the following relationship: 

*It must be noted that in general the parameter vef 
can be defined in such a waY. as to make ael and 
( el equal to ak and (k ; for this purpose it is necessary 
to examine vef (cu ) , as was done earlier (see Ref. 8, 
Sec. 61 ). However, analysis shows that such determina­
tion of the effective collision freq~ency leads to t.hr.ee 
exp-essionsfor v f (cu), as shown m F1gs. 8 (colhswns 
w1th molocules) ~nd 9 (collisions with ions). As can 
be seen from the figures, the indicated three expressions 
for vef (a) differ considerably even at the same value 
of wand vary substantially with cu. Therefore Ver 
loses in this case its physical significance of an "elec­
tron collision frequency ( v 12 -+Qat cu -+0 ). In addition, 
the requirement that t: f an8. x l be equal to (k and ak 
calls for the use of a{ east t~o substantially-varying 
functions v ( cu ) • There is no sense in doing this and 
it is more cbhvenient to employ the coefficient Ka and K(. 
In strong fields the use of v leads to even more 
serious aifficulties. ef 
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(23) 

Comparing now the values of the conductivity and 
dielectric constant calculated with the simple 
equations (22), (22 '), (23) and those obtained with 
the kinetic-theory equations (Sec. 3 ), we see that 
in strong fields (as well as weak ones) the coef­
ficients K(J and Kf are nearly equal to unity as 
before: at x << 1 (low frequencies), K(J"' 1.03 
and Kf"' 1.07 (see, for example, the dotted curve 
on figures 6 ), and at x > > 1 (high frequencies ) 
K(J _, 1 ; K( _, l. 

-z 

FIG. 9. Dependence of vef ( w)/vefO on qi== w/v0i 
for collisions with ions. 

In the case of collisions with ions, if we 
restrict ourselves to high frequencies (w.<, 10 v 0 i ), 

Eqs. (22) and (22 '), used in con junction with the 
effective electron temperature Te f as defined by 

equation (20), result in strongfield values of CJ 

and (that are even in closer agreement with the 
results of the kinetic theory than the weak-field 
values.** 

In conclusion the author thanks Ia. L. Al' pert 
for guidance in this investigation and for many 
advises and comments. 

**The latter circumstance follows from the fact that the 
effective frequency of collisions between electrons 
and i?~S (:22) decreas~s with increasing Tef, i.e,, the 
cond1t1on w >> v .f' 1s better satisfied in a stron~ 
field than in a we/f.k' one, Let us also recall that If 
the electron temperature T differs from the ion tempera­
ture T, a somewhat differeg{ expression is used to cal-
culate VefOi than (22) (see Ref, 8, Sec. 61). 
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