SOVIET PHYSICS JETP

VOLUME 3, NUMBER 6

On the Effect of Radio Waves on the Properties
of Plasma (lonosphere)
A. V. GUREVICH
Scientific Research Institute for Terrestrial Magnetism
(Submitted to JETP editor April 6, 1955)
J. Exptl. Theoret. Phys.(U.S.S.R.) 30, 1112-1124 (June, 1956)

A successive method is developed for determining the electron-velocity distribution
function in plasma in an alternating electric field and a constant magnetic field, assuming
the collisions between the electrons and molecules or ions to be elastic. Expressions are

derived and analyzed for the mean electron energies, for the conductivity and the dielectric
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constant of the plasma, and for the effective number of electron collisions.

1. INTRODUCTION

IF an electromagnetic wave is propagated in the
ionosphere, the intense alternaing electric field
of the wave may change substantially the energy of
the electrons, and consequently the conductivity
and the dielectric constant of the plasma. To
evaluate these changes, one must first determine
the electron-distribution function.

Considering only the elastic collisions between
the electrons and the heavy particles (molecules or
ions) of the plasma we know that with each collision
the electron loses only a small portion of its
energy [on the order of §=2m/M, where m is the
electron mass and M the molecule (or ion) mass].
It is therefore possible to obtain the distribution
function in a simpler manner by representing the
collision integral in the Boltzmann equation in
differential form. Furthermore, since 8 is small,
the mean square velocity of the electrons is many
times greater than the mean directed velocity even
in strong electric fields. The symmetrical portion
(which depends only on the modulus of the velocity)
of the distribution function is correspondingly much
greater than its asymmetric portion. Taking these
into account, Davydov2 simplified the kinetic
equation considerably and solved it for the case
of stationary electric and magnetic fields.

In nonstationary fields the electron energy is
changed directly only by the electric field. Thus,
depending on the ratio between the time ¢ re-
quired to change substantially the electric field
(for example, if E=E  cos wt, tp~1 /), and
the relaxation time of the electron energy
(t, = 1/8v, where v is the collision frequency
of the electron), it is possible to distinguish
among cases in which the fields vary slowly
(tp > tr) or rapidly (tE << tr). In the former
(quasi-stationary) case the solution obtained in
Ref. 1 for a time-dependent electric field intensity
E is correct. In a rapidly-varying field, when
t, >> tp the mean electron energy cannot change
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as fast as the electric field; the symmetrical
portion of the distribution function should there-
fore be stationary, to a zero-order approximation.
I',et us also note that since the current relaxation
t}me tj is much smaller than the electron relaxa-
tion time ¢, , because t. ~ 1/v << Sy~ t ,

the ratio between tg and 2 affects the nature of
the distribution in rapidly-varying fields (tg <<t,).
The case where the electric field varies periodi-
cally with time is discussed inRefs.2 and 3 (in the
absence of a magnetic field) and in Ref. 4 (assum-
ing a constant magnetic field). However, owing
to incorrect solution methods, some of the results
obtained of References 3 and 4 are in error (cf.
below).* An analogous problem was also solved
in an analysis of the cross-modulation effect of
radio waves in the ionosphere, where corrections
were derived for the Maxwell distribution function
for the case of a relatively weak alternating
electric field, when the energy delivered by the
field to the electrons is much less than their
thermal energy (Refs. 6 and 7 and Sec. 64 of Ref. 8).
The purpose of this article is to solve the
kinetic equations, assuming an alternating electric
field and a constant magnetic field (without the
above-mentioned restrictions on the field intensity),
and to analyze the expressions for the conductivity
and the dielectric constant of the plasma. Section
2 discusses the method for calculating the distri-
bution function, really an expansion into a series
in powers of the parameter t5 / ¢, ( for rapidly
varying fields) or ¢, / tp ( for slowly-varying
fields). A zero-order approximation is obtained
for the distribution function. In Sec. 3 we obtain
and analyze expressions for the average electron
energy and for the conductivity and dielectric con-
stant of the plasma. In Sec. 4 we investigate the
possibility of using in our calculdions the values
of € and o obtained from elementary-theory equations.

'*The'expression for the distribution function,
derived in Ref. 4, was corrected by its authors in a

later work® (see footnote 3).
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We show that in the case of collisions with mole-
cules the use of these equations leads to but a
slight discrepancy with the results of the kinetic
theory. Generally speaking, this discrepancy is
more significant in the case of collisions with
ions.

Fstimates show that in many cases the incident
wave may change substantially the average electron
energy and the properties of the plasma.

2. CALCULATION OF DISTRIBUTION FUNCTION

Consider a spatially-homogeneous plasma located
in an electric and magnetic field. We assume the
collisions between the electrons and the molecules
or ions of the gas to be elastic. The electron
distribution function

v, 1) =Fo (0, 1)+ o T (0.8) + 1 (V5 1)

obeys in this case the following approximate system
of equations, derived in Ref. 1:

) a
B+ T (CER) ™
1 VT Of, vdm
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2 e T fo} =0,

of, | eE 3f,
ot

+ ——[Hij] 4+ =0, 17

m 0v

wherein terms on the order of y were neglected in
the derivation of Eq. (1). (As shown in Ref. 1,
X~ \/_8“|f1 | ~8f,). The normalization condition
for the distribution function is
4=\ fo (v, o2 do=1.

0

(2)

In Eq. (1) e is the electron charge, % the Boltzmann
constant, T the plasma temperature, E and H the
electric and magnetic field intensities, and v (v)
the frequency of collisions between the electron

eEy dfo | (io + v)2 (Ey/ Eg) + w¥,cos 8 (H/ H) + oy (io+ v) [HEO]/HEoe ot

A. V. GUREVICH

and the molecules (or ions). In the case of colli-
sions with molecules, we have

v (U) = ""'azNMU9

(3)

where a is the “‘radius’’ of the molecule and N
the molecule concentration; in the case of colli-
sions with ions, on the other hand, we have (see

Ref. 8)

2mN et o2, m?
1©) = S In (145 1), g

where N is the ion concentration, p, is the maxi-
mum collision parameter, which can be sssumed to
equal the Debye radius® (at frequencies that are
not too high).

Let us now assume that the electric field
varies rapidly, i.e., t, << t, . In this case the

solution of Eq. (1) can be solved by successive
approximation:

fo(v’t):foo‘{‘fol‘f“..., 4)

(o, 0) =T+ Ty +...

Neglecting in the zero-order approximation the
variation of the distribution function due to the
collisions (on the order of f/t, ) as compared with
the first term of the equation (df/ 9t ~f/ tg ),
we have 9f oo/ 9t =0or

foo = foo (V)5 (5)

i.e., in the zero-order approximation the symmetri-
cal portion of the distribution function is indepen-
dent of time (see Introduction). On the other hand,
the dependence of foo on v is determined, as it
should be, not by the equation for the zero-order
approximation (4), but by the requirement that the
boundary conditions for the next (first-order)
approximation be satisfied (see below).

Inserting now (5) into (1), we obtain f19 (the
electric field is assumed for simplicity periodic,

E= E, cos o t, and the magnetic field H is assumed
constant):

(6)

fo=—13n du |

+

(io +v) [0} + (o +v)]
(—iw 4+ V)2 (Ey/ Ey) + w% cos B (H/ H) + o (—iw+v) [HE)/HE,

e—imll

(—io + v) [0 + (—io + v)?]

where @y =eH /mc is the gyromagnetic frequency,
and (3 the angle between H and E, -
Next, inserting f,  and f, ; into the equation for

’

the first approximation fo1 and integrating it with
respect to time, we obtain in expression for f,
the following term
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5 0 o2} df
Af . = 2.2 Jy2 0 J 00
for 202 0v { " < 3mzs * (©) dv

KT dfoy
m dv

+ =+ Ufoo)} t
which increases without limit as ¢ =®. Stipulating
the existence of the distribution function, i.e., the
boundedness of f;; at ¢—®, we set the expression
in the braces equal to zero, and obtain

? mo dv 1 (7
foo = Cexp {—§kT+ (€25 13md) % ()]
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and the constant C is defined by the normalization
condition (2). Thus a unique solution to the sys-
tem of equations (1) is obtained only by satis-
fying the supplementary condition that the solution
be bounded at ¢t —®@.

Integrating the equations for f;, and f,, with
respect to time, we can obtain the following ap-
proximation (with accuracy to within a time-
independent function, which is determined by
specifying that f02 be bounded at ¢t —®), etc.
Comparing the successive terms of expansion (4)
we find that in case of collisions with molecules
the resultant expressions are correct provided the
following condition is satisfied

H :
ere 1,5 8\'0(1 4 ek, /2 (8)
2
2(0) = gt (7) ¢ wVGRTms "
1,210 Ny V'T e
YA ~ PO (1 a0y *‘) <b
SR T — ) © o
2 oty 4y @—0"FV2)  ,here 1, = v and ¢ £ 1, namely:
. V 2v,eE V2 eEy
cos sin?f ———2=2_  if ? y2 - =00
P sin?] o VakTms A 7% VST
o= =
m

In the numerical coefficient we assumed
8=3.4x107% and 7a? = 4.3 x 10-16(see Ref. 8);
E, is in millivolts per meter.

In case of slowly-varying fields, reversing the
inequality sign in (8) we obtain for f, and f;,
the expressions similar to (6) or (7) but with E,
being replaced by v/ 2E, cos wt in fy,. Thus
we have

) (9)
modv

foo=C () exp {*S RT + (26°E,* | 3m3) ¢ (1) cos* ot }
0

where the constant C (¢) is determined by the nor-
malizaion condition (2). For w ¢ =0, i.e., for

E ~E ; , the distribution function (9) agrees with
that obtained in Ref. 1 for the stationary case.
At H =0 the distribution function (7) agrees with
that obtained in Refs. 2 and 3. However, (9)
does not agree with the function obtained under
the same conditions in Ref. 3 (Section 7). In
connection with this let us note that Refs. 2 and
3 attempted to solve Eqgs. (1) by expanding them
into a Fourier series, and although this led to
separation of the variables, it also resulted in an
infinite system of interrelated differential equa-
tions. Since general analysis of such a system
is exceedingly difficult (the termination method
was used in Reference 3, but the authors of

this article did not investigate fully the condi-
tions under which this method is applicable,* and
therefore the results they obtained for the case of
low-frequency fields (Ref. 3, Sec. 7) are not
quite correct, even though the distribution ob-
tained in Refs. 2 and 3 for rapidly varying fields
does not agree with (7). Let us note that Ref. 3
investigaed not the approximate system of Egs.
(1) , but a complete infinite system of
equaions, equivalent to the 3oltzmann equation.
The method developed in this article can also be
used to solve that problem. The distribution
function (7) does not agree with that obtained in
Ref. 4.%*

In the case when the principal role is played
by collisions between electrons and ions, expres-

*The attempt to approximate ¢, made in Sec. 5 of
Ref. 3 (from Sec. 3 of the same reference ) is not
sufficiently consistent: instead of function f,, Whi
should be obtained in this approximation, fundPion foo

was used (approximation ¢ , Sec. 3), which is incorrect
within the framework of the method employed.
**Recently the authors of that reference deri a
correct expression for the distribution function,” agree-
ing with (7). The same expression was derived for the
distribution function by Fain.? The kinetic equations
were solved in these investigations as in Ref. 3. Fain
als_o investigated the applicability of this method and
arrived at a condition that is equivalent to (8) (see
also Ref. 10).
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sion (7)is valid for the distribution function if
the following condition is satisfied:

(V27 3eEy /o VETM) + 8 /o< 1. (10)
Neither the question of obtaining the distribution
function in case of collisions with ions when
conditions (10)are not satisfied (stationary and
quati-stationary fields), nor gyro-resonance are
considered in this article.*

The solution above is for a plane-polarized
electric field (E=E_ cos w ¢ ). However, in
anisotropic plasma (?1 # 0), the plane electro-
magnetic wave breaks up into two elliptically-
polarized waves. It is therefore interesting to
determine the electron distribution function for
the case of an elliptically-polarized electric
field E. Resolving E along the three principal
polarization axes we have

E = E,cos ot + Efeeiof 4 ETe—iot

(E,, is the plane-polarized field with E,, || H;EI
and EJ are the circularly-polarized fields in a
plane perpendicular to H and rotating in the same
(minus) or opposite (plus) direction as the electron
in the magnetic field), it is easy to show that the
same expression (7) is valid for the distribution
function, prov;ded that E02 ¢ (v) is replaced by

E
Egg(v) = g

In particular, if the f ield is circularly polarized in
a plane perpendicular to #, it can be seen from

(11) that the effect of the magnetic field is actually
equivalent to an increase (or decrease) in the
frequency of the electric field, a physically under-
standable effect.

3. MEAN ELECTRON ENERGY, PLASMA CON-
DUCTIVITY AND DIELECTRIC CONSTANT

Using the expression obtained above for the dis-
tribution function, let us compute the mean electron
energy £, and the plasma conductivity o and die-
lectric constant €. Integrating the expressions for
the mean energy and for the electric-current densi-
ty with respect to the angular variables and em-
ploying the orthogonality of the functions fj, f; »
and X we obtain!

- (12)
&= 2nm8 vtfodo;

0

j= (c + ima;m‘) E— 4”§N § v3h,do.

Using the Hermite properties of the tensors ¢
and o and aligning the z axis with the magnetic

g (11) field, we obtain from (12) and (7) the following
251% 2512 expression for the components of the tensors ¢
T (@+ o) +v: " (0—aeg)?4vE" and o:
8 Ny v )
Gz = 3Vx m 3 w? + v2 du,
- 0
8 e2N 1 j 1 1
o] = =3 _— Y -
vy Syy Vs m §F;du ) l(m__m )2 V2 +(m—{—m )2+v2}'
8 e:N © 1 1 1 M
Syy = —0yy =1 = & deu? @ Fo itV —(m——mﬂ)2+v2}’
€ 1 8 2N @ 12"
22 e .
T 3V R 71—(5 Fdu 0t vE’
-1 e..—1 eN ¢ 1 ©—o @t o
€yy X — S_ENS qu‘_ 211 ) -+ zH 70
4T 4m 3Ve m 20 | (@—owg)*+v (@ + o)+
0
e\ry__ayx:_l 8 e_zigoqu}_ M — ©F on >
4 4T 3Vx m 20 | (0 —op)% 4 v (0 + 0g)? +v2 [’

Oxz = Ozx = Oyz == Ozy = 0;

€xz = Ezx = Ey; = €y = 0,

*The many difficulties arising in the analysis of the
distribution function n stationary fields in case of
collisions with ions were pointed out to the author
by V. L. Ginzburg. I take advantage of this opportunity
to thank him for attentive examination of the results
of this investigation.

where a dimensionless variable u = vy/2kT /m

was introduced;

4

ST u .
u=v)/ 2kT/m; F=foo @2 aTm) ¢ foo and @
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ae given by expressions (7) and (7). In the
absence of a magnetic field, it can clearly be seen

from (12”) that Oxy =0 yx = 0and o,, = Oyy=022
=0, with analogous relationships for ¢ .
a) Magnetic field H= 0. In the absence of a mag-

netic field (for collisions with molecules) we ob-
tain from (12):

(13)

uVY/2—'/.; Y/24+8/, (v + 9% .
Wi vizor (Y + 997

— 3
6 = 7 kT (1+ ¢*)h
8
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Here W, 5 (z) is the Whittaker function of order

{t, A; to simplify the notation we again introduce

the dimensionless parameters

Ml 3410mE2 157
3kTmdv: ~ N3T®

T

kT - T
qg= Tmo-; vy = V - =a?N y=2,36-10 WN VT,

where y is a quantity on the order of the square
of the ratio of the energy delivered to the electron
by the constant field £ to its thermal energy;

v, is a frequency on the order of the number of'
o= = e (1+ g% Vi1 i 0 4 eloectron collisions in the absence of an electric
3Vm mv Weiz—iiviato (Y + 997 field. In the numerical coefficients we gssumed
e—1 N Woig s, yjapsy, (Y + 47) 5=3.4x10"% and 7 a® = 4.3 x 10716 cm? ;
e = W = * . E, is in millivolts per meter. If y > 1 we have
MYy Wejaoyg yieay, (Y 49 from (12):
&= 3kTx (1+7/0%) Ly, (¥)/ 1y, (2),
_ 18 ﬂVE’T@T /a2yt L2 () (1 __68 In(x)>. (14)
*TVE L mo (L1799 1 Vi L))
e—1 =~ eM ‘/m Iy (X)( 5 15y, ()
= — e E— -_— = 1 _— — 2 >,
47t V6 L‘ovo m 1‘/’(4\') VZ-Y Il/’(x)
where

1

I,(x) = ﬂm S e— =2t ¢ dt

0

(14 %)

ex=/2

= Sthie D_p (V§;),

ifx >>1

Ip(x) = Q2x) 21 {1 —(p+ 1) (p+ 2)/ (2%)%}

(here Dy, (z) are the parabolic - cylinder functions) -
and

x =1 3wmV s/ 2ra*N yeE, =~ 660 w2 | E,N y

(x is on the order of (w/v )2, where v is the
electron collision frequency in a strong electric

field). The functions I, (x) are plotted in Fig. 1.
According to Egs. (14) and (14 ), € increases
monotonically with £ ) and T and decreases mono-
tonically with w and Nj, . If x >> 1 (high fre-
quencies) we obtain from (14) and (14 *) :

& =S kT(1+1/),

- 8  e2Nv,
3Vr

(T+7v/g%)",

e—1
47t

mo?

eN
mw? "’

In‘ this case the distribution function is Maxwellian
with an effective electron temperature

Tsp =T (1 +7/q%) = T (1 + eE} | 3kTmie?).
If x << 1 (low frequency):

i TG/ eE
V3T (3/4) V3wa®Ny

V=

23 UCla) V ma?N ymE,

2T ()
V3T ()

- 2/28t /s N
Ne ™ ~1,5-101 :

eNs'/z
'n:aZNA,IE0

e—1
4 T

~—167 101 2

NyEqo
In this case the distribution function is of the
Druyvest?_):n type with an effective field £ ¢,
=E, /\/2’ as it should be, for if x << 1, i.e., if
o << v, the alternating electric field acts on the
average as a constant field £ =E =E,/+/2.
Let_us also introduce corrections f{)r the expressions
for &, 0, and € in a weak field (y <<1). If
w? >> vg we have:

5 3 2y.
& =5 kT(1+1/4¢);
8 ezAro 1
* = VT . (LT

(e—1)/4r = — 2N / mw?.
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Fic. 1

If 0? << V(z)
& = AT (1 +2/s7);

4 N 1

> = 3V = my,

Ip(x) = @2x)71 {1 —(p+ 1) (p+2)/(2%)%

—2¢(1 —1n2));

Figures 2, 3 and 4 show plots of £, o, and
(€—=1)/4n) (related to their values & E —0) vs.
q =/ y for various values of y . It is clear from
the figures that at y >> 1 the mean electron energy
and plasma conductivity and dielectric constant
depend strongly on the electric field intensity. It

£
000 =

00

==
e
i
-4

ST
S N P
‘[' | i
% ¥/

N
Il

Fic. 2. Dependence of €/ €E=0 on g= w/vo
=4.24 x logw/NM\/ T for the values of y indicated
on the curves, and for w,, /v, = 10. Solid lines are

0
for B =0, dotted for ,8 =n/2.

’

is interesting to note that at low frequencies

(x << 1), o decreases with increasing £, and the
mean electron energy increases, and with it the
energy delivered the wave to the plasma molecules
(see Eq. 15). If we assume here the the absorp-
tion of radio waves is proportional to the conducti-
vity, an apparent contradiction arises: the energy
delivered by the wave to the plasma molecules

increases with the field in a strong low-frequency
field, and at the same time the absorption of the
wave decreases. This, however, does not contra-
dict the law of conservation of energy, for the
energy of the wave increases as the square of

E, , while the mean energy of the plasma electrons
is proportional to E ;) [(from (15)]. Consequently,
even though the total energy delivered by the wave
to the plasma molecules increases with £, its
relative value decreases; therefore, the absorption
dso decreases, and exhibits a relative decrease in
the amplitude of £ on the given section of the

peh.
&1
T
4 { s i e~ S 1
<= 7Tt 7 = /3
AVARN . A iyl I
At SEEEEn
A ! 1
LA 2 J |
o L+ A 70 W7 i |
i —— 7 s 74s il
l T
— /
4
Qo1 A {
[ -
gt
am =05 /] +45 1 lgg 2

F1G. 3. Dependence of (e~1/(e~1 on q for
collisions witﬁ molecules at H-—ZO efor \E=0 "1

various values
of ¥ as marked on the curves.

Let us also note that the probability of the
electron having an energy greater than the pre-

scribed value of € is given by the following
equation

P(E> 60 = \ V2 ged?,
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where v, =/ 2 €/m . It is now easy to obtain
an expression for P (€ > € ) for various limiting
cases. In particular, fo y >> 1 we have

PS> &) = 1. (b, %) [ Iy, (%), (16)

Ly, (ty, x) = V—??S t'/1exp {— 2 — 2tx} dt; (16 *)
Z

t . (80
T TERTE (T + 174

It is clear from (16) and (16 ’) that in a strong
field the electron energy is less likely to deviate
substantially from its mean value € at low fre-
quencies than at high frequencies.

b) Magnetic field H # 0. If the effect of the
constant magnetic field is taken into account, the
computation of ¢, o, and ¢ is in general much
more complicated; however, in some particular
instances it is possible to convert the expressions
for £, 0, and € to those discussed above by intro-
ducing effective parameters E{ , o, which take
the magnetic field into account.

6
Ge-
s =====cc==============—==c=c=c=cc
'I .
» s
L NN

1 {4z a2 =

i a

A Y

2

II}"’7 //
o B

)

-1 0 ! Z 199

F1G. 4. Dependence of U/OE —p Ong for collisions

with molecules (at H=0) for the various values of
¥y marked on the curves.

It is evident that if 3= 0 (B is the angle be-
tween E and /) the magnetic field does not affect

the symmetrical portion of the distribution function.

Consequently, the average electron energy, and

also the components of the conductivity and
dielectric constant tensors (0,,5 €, ), which are

parallel to Hare given by the expressions analyzed
previously (E{=E ; "= ®). For the remaining
components of tensors o and ¢ we obtain the some-
what more complicated expressions (12). In
several limiting cases they can be simplified.

For example, if y >> 1, x >> 1, and

x (o~ wy Y / ? >> 1 the expressions for

0,x €tc. are the same as obtained in the weak-

field theory [ with the temperature replaced by its
effective value Tef » as given in (20) ] , namely;

— i e2Nv, 1
Y 3Vx m ) a7)

2

CSyy =G

1 1 2\'/a.
X <(°’_‘”H)2+ (0 Q)H)2>(I +1/9%) o

2 A7
ny == ——nyz -_13__5_.8 J\/VO%
T m

(1 1) s,
X o —opt @ ra,y I+

cep— 1 syy—l . 2N
dn T dm T m(ei—ey)?’
€yy <)y . 2N oy
e e ST
T m(0?— wh)

The magnetic field affects the electron distribution
most when 3 =7/ 2. In this case we have for
y >> 1andx(w+coH)2/cu2 >>1

é)—: g[—]:o (E(;’ wl);

(18)
1 o0 — oy 2 E: ,
Oyx = Oyy = 7(1 + (w - wh.\‘ ) C;H:O( 0 @),
2(cmH ’ Nn.
Ty = O = G T (o @)
sxx—i . eyy_“1
4T - 4t

. TN Yt
YA S i

Pz e s bto)
(0 + wpy)?2x l,/’ (x))”
Eyy Cyx

T 47
= VB ) FR e (O e
oLy mo o Ay (1), | (@ 4 )2
(@—opf 5 k), (x')}
@ Fop? o T, ()]
’ E

—_ 0 w_mH 2_ ’
Fo= 1f§]/1+(w+m,,) > 189

, V3 o2mV's
= ————
2 ma AMeI:o

o =|lo—og|; x
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If, on the contrary, x (0 + ©g)?/e? < 1, the effect
of the magnetic field is insignificant; for the
mean energy of the electrons and for the diagonal
cont onents’of tensors o and € (0, = Oyy =0zz7 -
wehave £ (= F ;0 = 0. The remaining com-
ponents have the following form:

2V woumylghy

Ory = Opy = — 1 ] - (19)
3T (Ya) (Egma®Nyyls
Cxy __ Sy
4 T 4
_; 2TCL) ©n _eNVE

©VBIEL) @ EymatNy

Figures 2 and 5 show plots of the functions e
and o, (atB=n/2)vs. q=0w/y for vy /vy=10
and for various values of y . The mean electron
energy € / 8E=o’ is seen clearly from (18) and
(18”) to increase resonantly in the vicinity of
th? gyro-frequency [ w ~ w, , compare (13) ] ;
this resonance is observed when the following
conditions y_>>1 X (wp/w)?>>1, are satisfied,
as can also be seen from Fig. 2. Under these
conditions f7/ op _ decreases resonantly (see
Fig. 5), w}ule at o = wy increases, and & de-
creases with increasing Eo’ the same as at low

o/5,
L )
[ 1N
LA
, . —;;—‘ /44-/0\1
> 2
4
L/ i
\
g AL
=1 0 1 2 3 lgg

FI1G. 5. Dependence of 0/0 on q (Collisions
with molecu]egefor /v, = 10%&? for various values
of y marked on the curveg. Solid curves are for 3=0,

dotted for ﬁ= n/ 2.

frequencies in the absence of a magnetic field
(see Eq. 15).

Let us also note that the case 8 =7/2 also
occurs for longitudinal propagation of the electro-
magnetic wave. The wave breaks up here into
two waves — ordinary and extraordinary — circularly
polerized in a plane perpendicular to # . For each
of these waves, as can be clearly seen from (11),
Eg=EyV2; ; ®’=| w twy|. Comparing (19)
with (18) and (18”) we see that in first approxima-
tion both circularly - polarized waves, which make
up a plane polarized wave, exert an equal effect

A. V. GUREVICH

of the electrons in all cases except gyro-resonance
(o ~ oy, % (wy/ ®) >>1). Inthe case of
gyro-resonance, however, the increase in electron
energy is due only to the extraordinary wave.

If angle B is arbitrary and the following condi-
tions are satisfied

xfcos? 8 >>1;  (2x/sin%g) (w — ©) e >,
the distribution function is Maxwellian with an
effective temperature

6’253 cos2f
T9¢:T{l+m[ w? (20)

N sinB (w? + w},)]|

R
(o ——-60?1)2

i.e., the same expressions hold for E, o, and ¢
as for weak fields, except that T is replaced by
Tef( see Eq. 17). Let us note that the electron
gas also has this effective temperature (20) in case
of collisions with ions, provided the following
conditions are satisfied.

© =>Vi;

;w—wH|>>"0i~ (21)

Here v, is on the order of the frequency of
collisions between electrons and ions in the ab-
sence of an electric field. fx(w + @ ) ?«l,andy> 1,
the distribution function (in case of collisions
withmolecules is of the Druyvesteyn type with
an effective field Ee = EO / V2 ; expressions
(15), (19) are valid for ET, e,and 0.

4. EFFECTIVE FREQUENCY OF ELECTRON
COLLISIONS

The expressions for o and € obtained above with
the aid of the kinetic theory are in general quite
complicated. It becomes therefore advantageous
o investigate the possibility of calculating o and
€ from the elementary theory equations:

_ eN Vad . (22)
Xel7™ Tm 2 2
w +v3¢
. 1__4Tce2N 1
(el) m m2+\‘§d) ’

For this purpose it is necessary to determine the
effective electron-collision frequency (Vef) and to
compare the values of the conductivity and dielec-
tric constant (o,;, ¢,] ) from Egs. (22), with

those (ok . Ek), obtained from kinetic theory.
Let us first consider the case of a weak electric
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field(ezE%/ 3ETmd& (w2t v02 << 1), when the

effect of the wave of the plasma can be neglected.*

Here, as is well known, it is possible to determine

the effective electron-collision frequency v, at

high frequencies (0 >> v, ) in such a way that
H
16
15
1
13
12
1
10
09

g 7 2 J 4 q
F'1G. 6. Dependence of K, and K, on g for collisions
with molecules. The dottedJines sfow curves for
strongelectric fields (aty=10%).
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F1G6. 7, Dependence of K. and K, on 1 for
collisions with ions. g € °8 9

v ’?(wyu”o

1 2 3 g

FIG. 8. Dependence of vf (@) /v, ¢, on g for col-
lisions with mp:l:c?llg:.o ef efo

the conductivity and the dielectric constant, cal-
culated from the kinetic theory and from Eq. (22),

*Let us note that the weak-field condition specified
here is valid in the case of collisions with ions only

if 0 Voi *

are in agreement (see Refs. 11-13):

b0 = 2 Y (229
8V2 y/ kT _,
= — —=a®N y (for collisions with molecules)
3Vr m
4
Y7
_2Vim  eN; [ (T)?

3 (kT)a'I; lszies} (for collisionswith ions).

If the condition w >> v, is not satisfied then
0, and ¢,; no longer equal o, and ¢, . Itis
therefore necessary to introduce correction
coefficients K, and K, , which are determined in
the following manner:

ex— 1 = Kq (00— 1).

3k = Kg39n;

The coefficients K, and K, plotted in Figs. 6
and 7 are functions of the frequency. In the

case of collisions with molecules (Fig. 6) the
correction coefficients K and K, are nearly equal
to unity; on the other hand, in the case of colli-
sions with ions (Fig. 7) they may differ con-

siderably from unity (atw £,10 v, ; ),* and this

circumstance must be taken into account in the
calculation of the conductivity and of the dielectric
constant.

In a strong electric field, K, can be obtained
from effective electron gas temperature T, In the
case of collisions with molecules we have here

Vef = Vefo \/Te// T, where Tef is determined by

the following relationship:

*It must be noted that in general the parameter v, ¢
can be defined in such a way as to make 0,; and
€.y €qualto oy and ¢ ; for this purpose it is necessary
to examine v_, (w ) , as was done earlier (see Ref. 8,
Sec. 61). However, analysis shows that such determina-
tion of the effective collision frequency leads to three
expressionsfor v_; (@), as shown in Figs. 8 (collisions
with molecules ) and 9 (collisions with ions). As can
be seen from the figures, the indicated three expressions
for v, (0) differ considerably even at the same value
of w and vary substantially with @ . Therefore Veé
loses in this case its physical significance of an'elec-
tron collision frequency (v —0 at @ ~0). In addition,
the requirement that ¢,; and’s; be equal to € and 0
calls for the use of at ieast two substantially-varying
functions v, (). There is no sense in doing this and
it is more cfivenient to employ the coefficient K, and K.

In s}rona_fields the use of v _leads to even more
serious difficulties. ef
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Ten_ | EE [ cos® (23)
- = : 2 /
T 3RTmd \(,,2 + \.:ef)')T(ef)T
sin® B[ 1
+5
P _ 2 2
(w mH) +(\Jef)0'{'ef)/T

1
+ - ]J :
(@ +o0y)2 4 \('ef)OY(ef)/T

Comparing now the values of the conductivity and
dielectric constant calculated with the simple
equations (22), (22), (23) and those obtained with
the kinetic-theory equations (Sec. 3), we see that
in strong fields (as well as weak ones) the coef-
ficients K, and K, are nearly equal to unity as
before: at x << 1 (low frequencies ), K, =~ 1.03
and K, = 1.07 (see, for example, the dotted curve
on figures 6), and at x >> 1 (high frequencies )
K, ~1; K, — 1.

FIG. 9. Dependence of v, ( co)/uet-0 on q;= /vy,
for collisions with ions.

In the case of collisions with ions, if we
restrict ourselves to high frequencies (vX 10 vy, )
Egs. (22) and (22”), used in conjunction with the
effective electron temperature T, ; as defined by
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equation (20), result in strongfield values of o
and e that are even in closer agreement with the
results of the kinetic theory than the weak-field
values.**

In conclusion the author thanks Ia. L. Al’ pert
for guidance in this investigation and for many
advises and comments.

**The latter circumstance follows from the fact that the
effective frequency of collisions between electrons

and ions (22) decreasqs with increasing T ,, i.e., the
condition @ >> v ﬁ is better satisfie§ ine{a stron

field than in a wedk one. Let us also recall that if

the electron temperature 7 , differs from the ion tempera-
. e .
ture T, a somewhat dlfferen{expressmn is used to cal-

culate Vero; than (22) (see Ref. 8, Sec. 61).
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