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Eigenfunctions are obtained for the angular momentum operator of one and two gravitons. 
The states of a single graviton are separated, according to their parity, into quasielectric 
and quasimagnetic states. The possible states of a two-graviton system are investigated. 
The Clebsch-Gordan coefficients are calculated for S = 3 and S = 4. 

A N investigation by Landau 1 concerning the 
angular momentum of a system of two photons 

led to the discovery of certain general selection 
rules limiting the possible values of angular mo­
mentum and parity for such a system. These rules 
appear as the consequence of specific character­
istics of photons, associated with their zero rest 
mass. 

Since gravitons, like photons, have zero rest 
mass, it would be of interest to look into the 
analogous problem of determining the limitations on 
the possible values of angular momentum and parity 
foratwo-graviton system. By using generalized 
svherical vectors, as in earlier work, it is possible 
to obtain eigenfunctions of the angular momentum 
operator for one and two gravitons. The rules pro­
hibiting certain states, characterized by definite 
values of total angular momentum and parity, follow 
from the apparent form of these functions. 

In the linear approximation of the general theory 
of relativity, the tensor of the gravitational field 
g , coiocident with the metric tensor, departs 

f.J.V 

little from its Galilean values B11v : g 11v = B11v 

= h . Investigating this equation for a particle 
!lll 

with zero rest mass and spin 2, Fierz 2 showed that 
in a gauge transformation of the field 

where A11 is an arbitray vector, only two components 

of the tensor h11v can remain different from zero, 

in accordance with the two possible values of polari­
zation. Thus a weak graviational field is de­
scribed by a three-dimensional tensor of second 
rank, satisfying the condition of orthogonality, with 
a trace equal to zero. A 

The operator of the total angular momentum M ij 

of a single graviton is defined as a transformation 
of the tensor function by an infinitesimal three­
dimensional rotation 

(l) 

= (kll Lj + sij 1 rs), 

where p. is the momentum of a graviton, and kl, rs 
' are tensor indices taking the values l, 2, 3. In 

configuration space the angular momentum operator 
(l) operates on the single-graviton wave function 
1./Jrs (p ). 

The division~£ the total angular momentum into 
an orbital part L and a spin part~ .. has limited 

ij '1 
physical meaning, since there is no rest systen1 for 
a graviton, and therefore the usual definition of 
spin is not applicable. Furthermore, a state with a 
definite value of orbital and spin angular momentum 
does not satisfy the condition of orthogonality, so 
that only certain superpositions of these states have 
physical meaning. However, this separation enables 
us to construct eigenfunctions of the total angular 
momentum from more simple eigenfunctions of the 
orbital and spin angular momenta. The spherical 
harmonics <ll L 1 = aY L ( n) are eigenfunctions of 

the operators f~. and f , where L is the value of 
I} Z 

the orbital angular momentum, m is its projection 
on the _2 axis, and n = p/ I pI· 

~ Y~m Y L'm' dw = OL£' Omm'; 

From the equations 
-00 

(kl I 1/2 SL Irs) Xo. rs = S (S + 1) ;(p., kl = 6x,~. h/,(2) 

(kll S;z Irs) Xr. rs = fLXP·, kl, fL = 0, ± 1, ± 2. 

(where 11 is the projection of the spin S = 2 on the 
z-axis) the following eigenfunctiGns of the spin 
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operators ~e o(brr~ ) . (3) 

Xo. kl 116 , 
0 0 --2 

X±L hl = +} (~ ~ ~ i); 
I + i 0 

XH >< ~ ~ : (~ i :; ~) 
normalized so that x~,kl XJ.L'. kl = o1111 ,. We write 

the wave function of a single graviton in compli­
ance with the Clebsch-Gordan formula for the 
separation of the direct product of the representa­
tions D L x D S into irreducible parts: 

(4) 
p. 

where ] is the value of the total angular momentum, 
M is its projection on the z-axis, L is the value of 
the orbital angular momentum and the C L ,M -p.; 2 •11 

1,M 
are the Clebsch-Gordan coefficients, given, for 
example, in Ref. 3. 

Taking advantage of the definition of the 
generalized spherical S-vectors of type A 4 

(Y:7. J+J.. M )p. (5) 

-( J)f..[ 21-j-1 ]'/, J,M;S,p. 
- - 21 + 2A + 1 C1+'-· M+p. Y l+'-· M+r' 

we rewrite the eigenfunction of a single graviton 
in the form 

JLM ~ (Y2 )~· •f1.1 = a .w JLM Xp.. ~<.z, (6) 

(Y)LM/" = (- 1)~'- (Y)zM)-p· 
From the functions l/Ji~M it is possible to con-

struct two linearly independent combinations, satis­
fying the orthogonality condition 

JM O JM ~ (YJM)"· . 
nh 'fkz = ; ~hi =a~ Xr. kz, (7) 

p. 
ynr ~ 

oc~ L..J Pz Y JLM; 
L 

y(ll JM = [ 1 -j- 2]'/,y 
21-j-1 J,J·-l,M 

+ [:J-~ \J'' y J, J+J, .~1; 
Y ~2) JM -·[ (1 -j- 1) (1 + 2) ]'/, y 

- (21 + 1) (21- 1) J, l-2, hf 

[ 6 (1 -1) (1 + 2)]''· + (21-1)(21+3) Y;, J,M 

[ J(J-1) ]''•y + (21-j-1)(21-j-3) J,J+2M· 

following way: 

I •-\J 1<1 ( n) = tJl 1:1 (- n) . 

Noting the relationship YL (- n) = ( -l)Ly (n) 
m Lm ' 

we obtain 

IY(l)JM = (-1/+1 y(l)JM' 

/}'r(2) 1M= ( _ 1 ); y(2) JM• 

By analogy with the solutions for a single pho­
ton5 we call yO) 1M a state of quasimagnetic type, 
y< 2 l1 M a state of quasielectric type. 

As was to be expected, both solutions (7) are 
meaningful only for values of ] 2 2, that is, the 

total angular momentum carried away by a graviton 
cannot be less than two. This follows from the 
quadrupole character of graviton emission. 

Two free gravitons are desribed by a tensor of 
fourth rank 

'fkzmn (PIP2) = ~mnhl (P2PI)· 

In the center-of-mass system p 1 + p 2 = 0 the wave 

function will depend only on the relative momentum 
p 1 - p 2 = 2 p, and the orbital angular momentum can 

be represented in the form 

L. - - i (P· _i__ - p. ~) 
I] - I dpj J (}pi • 

We obtain the following expreE;sion for the spin 
operator of two gravitons: 

(ktmn 1 sij 1 pq rs) 

= (kll sij I pq) Omr Ons + (mn I sij Irs) Okp Ozq 

= -i (oiP o;" oqz- o;p oik llq1 

- o;q llph iliz + oiq opk ou) o,m osn 

- i (oi, o;m osn - o;, oim osn - o;s o,m oin • 

(8) 

(9) 

+ ois o,m o;n) opk oqz· 

Taking advantage of the fact that the eigenfunc­
tions of the orbital angular momentum are the 
spherical harmonics Y , and that those of the 

Lm 
spin angular momentum are the quadratic combina-
tions X X , we construct solutions for 

J.Ll,·kl /12• mn 

two gravitons from the Clebsch-Gordan formula: 

'f~f:,,s =a ~C5iwM-p; s, P YL, ,W-p. X~. klmn.. (lO) 
p. 

( ) d ff . F s ~ C2, p.-,.,; 2!•, X X 
The two solutions 7 i er in parity. or tensor Xr·, klmn = .LJ s, P· .,.-p.,, hl p., mn· 

fields the inversion operator I is defined in the ~'• 
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Here I is the total angular momentum of the two 
gravitons, L is the orbital angular momentum, M is 
the projection of I on the z-axis, S is the spin of 
thetwo-graviton system and p. is the projection of 
S on the z-axis. In view of the normalization 

properties 

•s S' ~ 
XI'-, hlmn X~'', hlmn = Bss' oiL!'-', 

\(y"S )"(Ys )~'-d ~ ~ ~ ~ JL}.1 J'L'M' (t) = OJJI OLL' OAfM'• 

it can be shown that the functions (10) are normal­
ized in the following way: 

\ •JLMS JtL'M'S'd ~ ~ ~ J ofklmn ofktmn P = OJ}' DLL' 0MM' 0SS'· 

If we take into account the orthogonality require­

ment 

n WJM 0 ,,,JM ~ 1 JLMS 
h, hlmn = ; 'flllmn = £..) PL s "(klmn 

L, S ' 

(ll) 

_ ~ (YJMS)f'- Xs yJMS '\:1 s - a ~ fL, hlmn, = LJ Pr, s (Y JLM) 
1'-,S L 

we can determine the apparent form of all 25 coeUi­
cients p L,S for the five possible values of L: I, 

I± l, I± 2 , and the five values of S: 0, 1, 2, 3, 
4. It should be pointed out that for two identical 
particles, the parity of the orbital angular momentum 
conforms with that of the total spin. 

For determining the coefficients p L, s we re-

quire the Clebsch-Gordan coefficients for S = 3, cal­
culated in Ref. 6 for S = 4, which can be calculated 
by the usual methods from the formulas (3.110) and 
(3.111} in Ref. 3. By comparing the coefficients 
of identical spherical harmonics with zero, we ob­
tain from the requirement (ll) the result that, for 
odd states with L = 2k + l, and for odd total angu­
lar momenta I, 

(} - p - p = 0. 
1-J,l- J,3- 1±2,3 

Thus the state L = 2k + 1, I = 2n + 1 is forbidden 

for any I. 
In an anlogous manner we obtain the coeffi-

cients p for odd states with even total angular 
L,S 

momentum, that is, we determine th~ following func-

tions, normalized to unity: 

yJJ, M, 3 (12) 

-[ 3/(1-1)(1-t-1) 1'/. 3 
- 4 (21-3) (21 + 1) (2/ + 3) y J, J-1, .'If 

[ 31(1-j-1)(1-j-2) }'/, r3 
- 4(2J-1)(21-j-1)(2J-j-5) }J,J+I,M 

[ 51(J-1)(J-2) ]'/, 
- 4(2J-3)(2J-1)(21+1) 

X Y},J-3, M 

[ 5(J-j-1)(1-j-2)(J-j-3) 1'/, 3 + 4(2.!-j-1)(21-j-3)(2J-j-5), YJ,J--\-3.M· 

This solution admits odd states with even angular 
momentum for any I. 

Even states with odd total angular momentum can 
be described by the following functions, normalized 
to unity: 

yll J, M. 4 __ [ 7 (1- 3) (J -j- 3) (J -j- 4) ]'/, y4 
- 2(2J-f-3)(2J-3)(2J-j-1) J,J-I,l'll 

[ 7 (1- 3) (J- 2)(1 + 4) ]'/, 4 + 2(2J+5)(2J-j-1)(2J-1) Y,,,+l,l'lt 

[ (J-f-4)(J-f-3)(J-j-2) ]'/• + 2(2J-1)(21-3)(2J-f-1) 

X Y~. J-3, M (13) 

[ (J-3)(J-2)(J-1) 1'/. 4 
+ 2(2J-f-5) (2J + 3)(2/-f-- 1) y J, J+3, M· 

There will be no state here with S = 2, since p 
J±l,2 

= 0. For I = 1 the rules for the addition of angular 

momentum admit L = 4, but for I= 1, p 1 ±3 4 = 0; 
Similarly, for I = 3 ' 

PJ-1,4 = PJ+I,4 = PJ+a.4 = 0, 

that is, even states of two gravitons with I = l and 
I = 3 are forbidden. 

For even states with even total angular momenta 
the sohtion p 1 , 2 = p 1 ±2 , 2 = 0 is obtained: 

Ylll J,M,4 (14) 

- [ (J + 1)(J + 2)(J + 3)(J + 4) ]'/, 4 

- 4 (2J -j- 1) (2J -1) (2J- 3){2J- 5) y J,J-4,M 

l 7 (J- 3) (1 + 2) (1 + 3} (J + 4) ]'I. 4 

+ (21 + 3) (2J -j- 1) (2J -1) (U- 5) y J,J-2, M 

[ 35(1--3)(J-2)(1-j-3)(J-j-4) ]'/, 4 

+ 2 (21 -j- 5) (21 -j- 3) (2/ -1) (21 -3) y J,J,M 

[ 7(1-3)(/--2)(/-1)(1+4) ]''· 4 + (21 -j- 7) ('2./ -j- 3) (2J -t- 1) (2J- 1) y J,J+2,M. 

+ [ J(J-1) (1 --2) (1 -3) ]''• 4 

4 (21 -j- 7) (2J + 5) (21 -j- 3) ('21 -j- 1) y J,J+4,M · 
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For the case under discussionS= 4: for J = 0, L 
can be equal only to 4, and the corresponding 

P is found to be equal to zero; for J = 2, 
1+4,4 

Pl,4 =pl+2,4 =pl+4,4 = 0· 
It can be easily verified that even states with 

even total angular momentum can he described by 
the following equation, which satisfies the ortho­
gonality condition (11): 

,1/ V J M 1 y ( 0 + y,O 
"(klmn = 2Vif h11 '1/hnlm lkmln 

(15) 

- .,.o ) - \]) xo - \])0 
hlmn - •0 klmn - • hlmn' 

where 

o (' I '') (' I 2) 'ljklmn = Ok( - Pi<Pt P" Omn- PmPn P • 

Substituting cp0 X~zmn into the equation for the 

eigenfunction of the square of the angular rwmentum 
operator: 

(16) 

A 0 A 0 + .itrnr tfktm + .ltns htms) 

+ 2 (2~?ntkn + 2•f~lmk + 2•¥~tmn 
, 11 o , ,11o , 11 o 

- Okm'r plpn - Okn'-rplmp- Ozm'rkppn 

, , o , ,11 o ~ ,11o ) 
- Otn'fkpmp- Omn"(hlpp- Ukl"(ppmn , 

we obtain an equation for ljJ 0 , 

2 0 JH2(j)O _ 11 .J{· .\]) 
VJ I - 2 tj I ' 

(17) 

that is, M2 = ](! + 1); o/ 0 = p JMeiMcp= Y JM, a 

sphericalharmonic. From the symmetry condition 
for the two-graviton solution 

0 0 ( ) 
htmn (p) = ~mnkl - P ' 

0 0 h . 
noting that Xklmn =X mnkl' we o tam 

that is, ! = 2n. 
All results concerning the number of states are 

brought together in the following table: 

J 
Even Odd 
States States 

0 1 1 
1 0 0 
2 1 1 
3 0 0 
2n 2 1 

2n+1 1 0 

Here it is obvious that for two gravitons, the ap­
pearance of states with total angular momentum 
! = 1 and ! = 3, as well as the appearance of odd 
stateswithoddtotal angular momentum, is strictly 
forbidden. 

These results are in complete agreement with 
the rules ascertained by Shapiro 7, by which it is 

forbidden for a particle to disintegrate into two 
identical bosons of zero rest mass and spinS if 
1) the spin of the disintegrating particfe is odd 
and lea:; than 25, or if 2) the spin of the disinte­
grating particle is odd and its wave function is 
odd. 

The method used here makes it possible to de­
termine the number of states with predetermined 
angular momentum and parity, and also to obtain 
eigenfunctions for one and two gravitons. 
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