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Eigenfunctions are obtained for the angular momentum operator of one and two gravitons.
The states of a single graviton are separated, according to their parity, into quasielectric
and quasimagnetic states. The possible states of a two-graviton system are investigated.
The Clebsch-Gordan coefficients are calculated for S = 3 and S = 4.

N investigation by Landau® concerning the

angular momentum of a system of two photons
led to the discovery of certain general selection
rules limiting the possible values of angular mo-
mentum and parity forsucha system. These rules
appear as the consequence of specific character-
istics of photons, associated with their zero rest
mass.

Since gravitons, like photons, have zero rest
mass, it would be of interest to look into the
analagous problem of determining the limitations on
the possible values of angular momentum and parity
foratwo-graviton system. By using generalized
spherical vectors, as in earlier work, it is possible
to obtain eigenfunctions of the angular momentum
operator for one and two gravitons. The rules pro-
hibiting certain states, characterized by definite
values of total angular momentum and parity, follow
from the apparent form of these functions.

In the linear approximation of the general theory
of relativity, the tensor of the gravitational field
gl“” coincident with the metric tensor, departs
little from its Galilean values 8;11/ 8= B’W
= hI‘V' Investigating this equation for a particle

with zero rest mass and spin 2, Fierz? showed that
in a gauge transformation of the field

Bpy = hyy + 0A, [/ 0x, + OA,/0x,,

where AI‘ is an arbitray vector, only two components
of the tensor hyv can remain different from zero,

in accordance with the two possible values of polari-
zation, Thus a weak graviational field is de-
scribed by a three-dimensional tensor of second

From the equations
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where p,is the momentum of a graviton, and k[, rs

are tensor indices taking the values 1, 2, 3. In
configuration space the angular momentum operator
(1) operates on the single-graviton wave function

¢rs(p)°

The division of the total angular, momentum into
an orbital part ti‘ and a spin part i has limited
physical meaningi since there is no rest system for
a graviton, and therefore the usual definition of

spin is not applicable. Furthermore, a state with a
definite value of orbital and spin angular momentum
does not satisfy the condition of orthogonality, so
that only certain superpositions of these states have
physical meaning. However, this separation enables
us to construct eigenfunctions of the total angular
momentum from more simple eigenfunctions of the
orbital and spin angular momenta. The spherical
harmonics @, = aY, (n) are eigenfunctions of

the operators szf] and ,» Where L is the value of
the orbital angular momentum, m is its projection
on the ,axis, andn=p/|p]|.
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rank, satisfying the condition of orthogonality, with (k[ [1/, S‘f] [78) %o, rs = S(S 4+ 1) su, 1t = 60, 11, (2

a trace equal to zero. A
The operator of the total angular momentum M ;;

of a single graviton is defined as a transformation
of the tensor function by an infinitesimal three-
dimensional rotation

(kl|‘§3|r5) Ao, rs = PAo,nty =0, =1, =2,

(where p is the projection of the spin S = 2 on the
z-axis ) the following eigenfunctions of the spin

840
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operators are obtained:
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normalized so that x;‘; WXl k= )

the wave function of a single graviton in compli-
ance with the Clebsch-Gordan formula for the
separation of the direct product of the representa-
tions D, x D into irreducible parts:

JLM L, M—u; 2, p
=a Z Cim Y1, m—p Y nts 4)
L.

b
where J is the value of the total angular momentum,
M is its projection on the z-axis, L is tlllleMval'uze of
the orbital angular momentum and the C g Hs 2l

are the Clebsch-Gordan coefficients, given, for
example, in Ref. 3.

Taking advantage of the definition of the
generalized spherical S-vectors of type A*
(Y7 742 1) (5)

27 -1 1, .
= (— ])* 7, M; S,
( D [2J -+ 2x 4- 1] C/+7\y Mﬁu YJ—H, Mtps

we rewrite the eigenfunction of a single graviton
in the form

‘l){uLM =a ; (YIm)" Ao wis ©)

(Yim)" = (— D* (Yim)—p.
From the functions l/lﬁ‘M it is possible to con-

struct two linearly independent combinations, satis-
fying the orthogonality condition

ny, 'Pﬁ" = O; "Pilw =da 2 (YJM)M Xy. kls (7)
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The two solutions (7) differ in parity. For tensor
fields the inversion operator / is defined in the
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following way:
I 9y (n) = by (—m).

Noting the relationship Y, (=n)=(- 1)LYLm(n)
we obtain
[Y(I)JM _ (_ 1)J+1 Y(l) M

2

1}/(2) IM — (__ I)J y(z) JM.

By analogy with the solutions for a single pho-
ton® we call YV /M 4 state of quasimagnetic type,
Y@M 5 state of quasielectric type.

As was to be expected, both solutions (7) are
meaningful only for values of J > 2, that is, the

total angular momentum carried away by a graviton
cannot be less than two. This follows from the
quadrupole character of graviton emission.

Two free gravitons are desribed by a teusor of
fourth rank
Yrimn (P1P2) = Vmnnr (P2py)-
In the center-of-mass system P, +Py,=0 the wave
function will depend only on the relative momentum
P; — P, = 2p, and the orbital angular momentum can

be represented in the form

A
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We obtain the following expression for the spin
operator of two gravitons:
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Taking advantage of the fact that the eigenfunc-
tions of the orbital angular momentum are the
spherical harmonics YL , and that those of the
spin angular momentum are the quadratic combina-
tions ¥ , we construct solutions for

H1,k1
two gravitons from the Clebsch-Gordan formula:
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Here J is the total angular momentum of the two
gravitons, L is the orbital angular momentum, ¥ is
the projection of J on the z-axis, S is the spin of
the two-graviton system and p is the projection of
S on the z-axis. In view of the normalization
properties

S S’
Xp, klmn Xu-’, klmn — 8SS’ aup';

=S S N o
S (Yorm)* (Yrom)* do =855 810 3,

it can be shown that the functions (10) are normal-
ized in the following way:
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If we take into account the orthogonality require-
ment
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we can determine the apparent form of all 25 coeffi-
cients p | ¢ for the five possible values of L : J,

J+1,]+ 2, and the five values of 5: 0, 1, 2, 3,
4. It should be pointed out that for two identical
particles, the parity of the orbital angular momentum
conforms with that of the total spin.

For determining the coefficients p L,s Were-

quire the Clebsch-Gordan coefficients for S = 3, cal-
culated in Ref. 6 for S = 4, which can be calculated
by the usual methods from the formulas (3.110) and
(3.111) in Ref. 3. By comparing the coefficients

of identical spherical harmonics with zero, we ob-
tain from the requirement (11) the result that, for
odd states with L = 2k + 1, and for odd total angu-
lar momenta J,

0.

Py =03 = Pugas ™

Thus the state L =2k + 1,/ =2n + 1 is forbidden
for any J.

In an anlogous manner we obtain the coeffi-
cients p; ¢ for odd states with even total angular
momentum, that is, we determine the following func-
tions, normalized to unity:
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This solution admits odd states with even angular
momentum for any J.

Even states with odd total angular momentum can
be described by the following functions, normalized
to unity:

ns,ma __[7(J—=3)(+3)(J+4) (/v
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2RIFSRI+3HRIFT 7, J43, M-
There will be no state here with S = 2, since Prits

=0. ForJ =1 the rules for the addition of angular
m.on‘lentum admit L =4, but for / =1, Ptz 4= 0;
Similarly, for J = 3
OI—1,4 = Pi41,4 = Psza =0,

that is, even states of two gravitons with / = 1 and
J = 3 are forbidden.

For even states with even total angular momenta
the solwtion Pra=Pytg = 0 is obtained:
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For the case under discussion S =4: for / =0, L
can be equal only to 4, and the corresponding

is found to be equal to zero; for J =2,

0.

Prva,a

Pra=Pri2,4 = Prra,a~
It can be easily verified that even states with
even total angular momentum can be described by
the following equation, which satisfies the ortho-

gonality condition (11):

JVIM 1 0
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- nglmu ) = lpOxglmn = q)?zlmn’
where

71?:1mn = (Ory — prp1/ P?) (amn—“ PmPn /pz)

Substituting ¢, lemn into the equation for the

eigenfunction of the square of the angular momentum
operator:

M2 = (o I3y + 8) Yt 16)
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we obtain an equation for l//o,

M240 = 1/, 300, an

that is, M2=J(J + 1); ¢ = pJMe‘M‘P= Y,y 2

spherical harmonic. From the symmetry condition
for the two-graviton solution

l‘)(I)almn (p) = ‘]??nnkl (_‘ P),

noting that lemn =y ?nnkl' we obtain

Yim (@) =You(—p)=(—D'Ym(p)
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that is, J = 2n.
All results concerning the number of states are
brought together in the following table:

J Even 0dd
States States

0 1 1

1 0 0

2 1 1

3 0 0

2n 2 1
201 1 0

Here it is obvious that for two gravitons, the ap-
pearance of states with total angular momentum
J=1andJ =3, as well as the appearance of odd
states with odd total angular momentum, is strictly
forbidden.

These results are in complete agreement with
the rules ascertained by Shapiro?, by which it is
forbidden for a particle to disintegrate into two
identical bosons of zero rest mass and spin S if
1) the spin of the disintegrating particle is odd
and less than 25, or if 2) the spin of the disinte-
grating particle is odd and its wave function is

odd.

The method used here makes it possible to de-
termine the number of states with predetermined
angular momentum and parity, and also to obtain
eigenfunctions for one and two gravitons.
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