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equilibrium solution, existing in the absence of 
external forces of the type considered above, is 
the simultaneous fulfillment of the following equa
tions 

(35) 

and, consequently, the forces F. must satisfy the 
condition ' 

(36) 

In particular it follows from (36) that gyroscopic 
forces will not disturb the equilibrium condition 
of the system. In an analogous way one can treat 
the more general conditions mentioned in Ref. 2. 

I take this occasion to express my gratitude to 
N .. N. Bogoliubov for proposing the problem, and 
also to M. A. Leontovich and Ia. B. Lopatinskii 
for discussion of questions connected with the work. 
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It is shown that the discrete energy levels of an electron in a crystal are widened into 
narrow bands in strong magnetic fields. The structure of the energy zone in a crystal lo• 
cated in a magnetic field is studied. The possible influence of the broadening on the 
de Haas-van Alphen effect is discussed. 

A FREE electron in a uniform magnetic field 
performs a finite motion 1 which corresponds 

to a classical revolution (at least in the direction 
rerpendicular to the magnetic field H). The mini
mum quantum-mechanical "radius" of this revolu
tion is 

oc0 = Vnc I eH. (1) 

In addition to the magnetic field the electron is 
acted upon in the crystal by a periodic electric 
field (the lattice constant will be designated by 
a), and for aU real fields H. 

(2) 

(thus, for example, with H rv 104 oersteds and a 
= 2.5 x 10-8 em we have f = 10-2 ). 

In the theory of electron motion in a crystal 
placed in a magnetic field the only terms that are 
retained (except in Ref. 2) are those which remain 
finite when f -> 0. As a result, the energy levels 

of the electron in a magnetic fi:eld are degenerate 
and depend, just as in the case of free electrons, 
on only two quantum numbers (see; for example, 
Refs. 3 and 4 ). If terms that vanish together with 
f are retained the degeneracy is removed and the 
character of the spectrum is changed. 

1 . In the absence of the periodic field the 
energy levels of the motion of a free electron in the 
plane ..1. H are expressed by the equation En 
= p. H ( n + 1/2) and the eigenfunctions are 

wh = ei· hlx(O (y + !X.~kl) 
i , n . n <Xo , 

where the Cf'n are Chebyshev-Hermite functions. The 
energy is independent of the quantum number k 1 
which d~termines the position of the ''center of 
oscillation" of the electrons y 0 =-a.~ k 1 , since 

all y 0 are equivalent in free space. In a periodic

field this equivalence disappears and the de
generacy is removed. In the approximation of 
weakly bound electrons (when the periodic field 
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can be considered a small perturbation) the fol
lowing dispersion law holds for small n (at the 
bottom of the energy zone): 

(3) 

00 (47tp(X~'ll) + ~ Ap (n, H) cos -a- , 
P=l 

where A 1 (n, H)= (-l}nn(p.H) 2V2E~3 11- 4 ; Eo 

=1r 2/ma 2 and Vis a quantity of the order of the 
first Fourier coefficients of the potential. 

For large n (close to the middle of the energy 
zone) the ordinary perturbation theory of a de
generate state can be used, resulting in the dis
persion law 

(4} 

( 21t) ( 21t y 1t ) + v J nn - cos --0 + cos-+ 1 m ' 
e \ a p 

+oo 
J nm( 2<=7t) = ~ <fln (x) C?m (x) e2nix/e dx. 

-00 

in (4) p designates the rank of the secular de
terminant and m is any integer m <.;;_ p. As p-> oo 

the argument 17m/( p + l) changes continuously 
from 0 to 11. The integral J ( 2rr/E) is always nn 
small for small n(N = V 2n + l « 11/d. There
fore, for small n a second-order correction of the 
energy must be made (which is given by (3)]. For 
N>17/dEN-17=ENl <<77), 

J (2 I ) ( l)n+L 2-'/, -'14 ( N )~'!, nn'Tt'E=- s ~ zl 

and thus J rv f • nn 
It can be seen from (3) and (4) that to each n 

there corresponds not a level but a narrow zone or 
band, whereas for free electrons the levels are 
very sharp. 

The relative level width (the width compared 
with the distance p.H between levels) is for 
small n: 

0 (n,H) = z2n27t-4V2E;;-2 , 

and for large n: 

The level width vanishes when a-> 0 or V-> 0. 

(5) 

(6) 

From (5) and (6) it can be seen that in the ap
proximation of weakly bound electrons the relative 
level width at the bottom of the zone is ""€2 and 

close to the middle of the zone it is "-' €. The 
levels broaden towards the middle of the zone. 

2. The broadening of discrete levels into 
narrow bands also occurs in the approximation of 
strongly bound electrons. In this approximation 
and in the absence of a magnetic field the electron 
energy spectrum is known to be composed of al
lo.ved and forbidden zones. We shall examine the 
structure of an allowed energy zone in a magnetic 
field (the edges of the zone are almost unshifted). 

The problem consists of the approximate solu
tion of the equation 

1 (A e "2 - p-- A) w + Vpw = Ed; 2m C I I 11 

(7) 

(Ax= -Hy. Ay = Az = 0). 

For our approximation we represent if! by the 
series 

n 
(8) 

where n is the radius-vector of a lattice site, the 
functions in the sum satisfy the equation 

and V ( r) is the potential function in an atom at 
the point n == 0. 

(9) 

A difference equation is obtained for the coeffi
cients a . Separating the variables which refer to 

n 
motion along the magnetic field, we obtain for the 
motion in a plane perpendicular to H 

(10) 

+a (n1 --I, n2) +a (n1 , n2 +I) e-iE,n, 

+a (nl, n2- I) eizzn,, 

where A l is the energy of motion in this plane. 
This equation also follows from the polar model 

of a metal5 , where it determines the emrgy of 
motion of a quasi-particle (an excitation of the 
crystal, bearing an electric charge). In this 
paper it is shown that from (lO) under the most 
general assumptions, there follows the functional 
equation 

(± i,..L - 2 cos 2x) cp (x) (11) 

= cp (x + 2) + cp (x- 2). 
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The signs + and - correspond to the lower and 
upper halves of the energy zone, while AJ. = 0 
corresponds to the middle of the zone ( ±will 
be omitted hereafter ). 

Introducing the operator t_ = ialax we can write 
(ll) as 

(2 cos eK + 2 cos ex) 9 (x) = I,_L 9 (x). 

Since the operator in the left-hand side of the 
equation is invariant with respect to the substitu
tion EX-> EX+ 2rr, the solution of this equation by 
the Flock-Bloch theorem is 

and can be written as 
+:n 

cp(x)= ~ C(mz+!?s)ei(mot-he)x. (12) 
lll=-00 

We expand the coefficients C in a series of 
Chebyshev-Hermite functions: 

C(ms+ks) =~ b,~,(ms+ke). 
r=o 

Substituting this in (12) and, furthermore, em
ploying Poisson's sum formula and a Fourier in
tegral for the Chebyshev-Hermite functions: 

+:n 
cp,(x)= lf2~i' ~ cp,(t)eitxdx, 

-oo 
we write the solution as 

+ro ro 

cp (x) = ~ e-znipl< h i~'br'fr ( x + '27
:) . (13) 

p=-00 (..:~:0 

Substituting (13) in (11) and multiplying by 

Cf n (x+ 2rr q I d, we integrate along the entire axis 
Ox and, using the relationships which exist for 
the functions Cfn 2 

+oo 
~Dmn (oc) == ~ ei~x Cf'n (x) Cf'm (x) dx 

-oo 

+co 
= ei (n-m) 7t/2 ~ Cf'm (x- oc) '-?n (x) dx 

-ro 

+co 
= ei (m-n) tt/2 \ com (x + oc)· ( ) d ~ T Cf'n X X, 

-::0 

we obtain 

(14) 

00 

(=0 

+oo 
X { )\(J>,." (2rt)- (' ')co, c ( 2rr) 

s -~- ""X'frX-S"'f'n(X)dx 

+-:o 
- ~ Cf'r (X- :rr + s ho (x) dx 

-:o ~ 

+QJ 

-.1 'fr(X-~-s)·p,(x)dx}'-'0. 
Here we have dropped terms containing 1P,n(4rriE), 
etc., which areofan order degree of exponential 
smallness than those which have been retained in 
(14). 

In order to solve (14) in first approximation we 
also neglect these terms (i.e., the second summa
tion). The coefficients Ill +4 (E) diminish n,n q 

rapidly with increasing q ( as 11 ( 4 q)!]. It can 
be assumed that the coefficients b change 

n+4q 

much more slowly (as will be confirmed later). 
Then we obtain 

Aj_ = 4h{Dn,n+4q(s), (15) 
q 

where the summation actually extends only to 
I q I "-' 2 - 3. This assumption can be checked by 

setting bn+Z q "' b n (- l) q in a definite small inter

val of change of q and writing (13) with these 

b nt-2 q" 

The function which results agrees with the 
fundamental Eq. (11), where AJ. agrees with (15). 
For small n, Eq. (15) or (16) gives A,l = 4-E2N2, 

(N 2 = 2n + 1 ), which is a solution that was ob
tained earlier5 • 

The integrals Ill +4 (E) are expressed in 
n,n q 

terms of the Chebyshev~Laguerre polynomials 
L <: q) ( E2 I 2 ). By using the asymptotic expression 

for these polynomials in terms of Bessel func
tions6, we obtain Ill +4 ( d "'] 4 ( NE). From the n,n q q 

theory of Bessel functions it is known that 
00 

2J0 (x) + 4 ~ J4 q (x) = 1 + cosx, 
q=J 

whmce we obtain for ,\1 
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A .l == + 2 ( 1 + cos sN). (16) 

This equation determines the energy levels of the 
particle as a function of the level number n. The 
width of the zone is 8 as in the absence of a mag
netic field when AJ. is expressed by AJ. == 2 
x (cos k 1 a+ cos k 2a). 

In second approximation we take the neglected 
terms into consideration, using for b the values 

r 
obtained in first approximation [for the integrals 
cil + ( 277/ d, q « n it is possible to use other 

fl.,n P 

asymptotic representations of the Chebyshev
Laguerre polynomials which fit the case N <1r/€]. 
We then obtain instead of (16) 

(17) 

= ± 2 ( 1 + COS EN)/ [ 1 + Jn (2rc I c) COS 2rrk], 

where 

xexp --:-N2 - -1 ~{ 4 ( 1t ')''·} 
. · 3 dv 

[ 0.7) is valid when] ( 277/d « 1]. n 
Thus even in the approximation of strongly 

bound electrons each n corresponds to a narrow 
band rather than to a single level. The width of 
this band, as can be seen from (18), depends 

stronglyon n in the present approximaion. Below 
and above the zone (for EN << 1) the levels are 
actually quite sharp; in the middle of the zone 

(EN < 1T) the levels broaden to distinct even though 
narrow bands. 

Since] ( 277/d is small, (17) can be written as. 
n 

AJ. = ±2 (1 + cossN) (19) 

X [ 1 - J" (2rr / z) cos 21tk]. 

Band widths in the approximation of weakly 
bound electrons are greater than in the strong 
.binding approximation, but the general character
istics of the bands are identical. Thus, in both 
approximations if EN (i.e., the energy) is fixed 
and t: is decreased the width of the bands is 
dininished. If t: is fixed and N is increased (i.e., 
for levels closer to the middle of a zone) the band 
width increases. 

It is seen from (16) that the structure of a zone 
is preserved in a magnetic field and that its edge 
is not shifted. For H --> 0, E --> 0 the number of 

levels within a zone increases and the widtQ. of 
each zone approaches the vanishing point. In the 
limit all levels fuse into a continuous zone. 

3. If the broadening of levels is sufficiently 
large it must influence the de Haas-van Alphen 
effect. That lis, the oscillations of magnetic sus
ceptibility and of other physical quantities can in 
some cases possess the character of more or less 
strongly marked beats. In order to prove this let 
us assume that 

[ k is understood to stand for two continuously 
ch~nging quantum numbers in (4)]. The number of 
electron states 

Z(E, H)~~1 dk1 ~k3(n, E) 
n 

+m 
~ ~ e2rripnk3 (n, E) dn. 

p=-<:n 

The integrals in the summation can be calculated 
by·the method of steepest descents, after which 
for the oscillating terms that enter into the thermo
dynamical potential n we obtain the following ex-
_pression: 

( 21tpC ,~ , ) \ dk 
COS h I e I H ,)max - [ J 1 

(20) 

{ . c asmax } 
X exp 27r.tp hf e I 11 --ar:- ~max (kl, C) 

instead of the cosine which is obtained when the 
broadening is neglected. Here S is the ex-

max 

tremai area of the section of the surface E==const 
cut uff by the plane perpendicular to H 3 , and (; 
is the Fermi energy. 

The effect of the additional fa,ftor in (20) can be 
studied by using the example of almost-free elec
trons, for whic:h the integral in (20) is calculated 
as 

J~ (27r.P~max I p.H), 

(] 0 is the zero-order Bessel function). Here the 

quantity ~ / p.H == o in (6) oscillates asH 
max max 

changes [with considerably lower frequency than 
the cosine in (20)]. This leads to small fluctua
tions of] 0 without a change of sign (when the 
width of the levels is not large). Such modulated 
oscillations (beats) of magnetic susceptibility 
have actually been observed 7 in some metals. 

From the form of the argument of] 0 it can be seen 
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that beats in small fields must be clearer 
than in larger fields, as is fully confirmed fo.r 
beryllium 7 , in which the beats were investigated in 
the range 3 x 10 3 - 2 x 104 oersteds. 

We note in conclusion that the broadening of the 
levels is strongly dependent on the approximation 
that is assumed and the the broadening must there
fore be calculated outside the framework of the 
approximations for weakly or strongly bound elec
trons. It is easily shown that broadening occurs 
in the general case. In any periodic field V the 
state of an electron is described by the sam~ 
quantum numbers k 1 , n, k 3 by which we describe 

a free electron in a magnetic field. In fact, if in 
the Schrodinger equation 7 we put Ax =- Hy, AY 
= A z = 0, then because of the symmetry of the 
Hamiltonian (which remains periodic in the Ox 
and Oz directions) the general solution must be 
of the form 

y, z), (21) 

where the functions uk k (x, y, z) is periodic 
1 n 3 

with the period of the lattice along Ox and Oz and 
decreases as exp(-y 2/2o.~atinfinity. We see 

from the equation for uk k that the energy of the 
1 n 3 

electron E nk 3 ( k 1 ) is a periodic function of k 1 

with the period a/ o. ~. 

The author wishes to express his gratitude to 
I. M, Lifshitz for discussions of the present arti
cle. 

Note added in proof: Attention has recently 8 been 
called to the broadening of levels and, in part, to the 
influence which this broadening has on the de Haas
van Alphen effect. The author is apparently unfamiliar 
with Ref. 2, which was published in 1952. 
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