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charged, the third, negatively. The tracks of the 
7T- mesons lay in a plane to an accuracy of 2°. The 
decay energy was* Q = ( 74.1 ± 1.4) mev and the 
mass, determined from the decay scheme, m r 
= ( 964 ± 3) m . The first r- meson came out at a 
very large angle to the plane of the emulsions, 
which made a direct measurement of its mass im­
possible. The track of the second r- meson was 
gently sloping. A direct determination of its 
mass by multiple scattering and range led to the 

• value m r= (1097 ± 105) me. 
The comparatively small energy of one of the 

11+-mesons produced in the decay of the second 
r- meson stands out. Such a case supports, as is 
well known ( see Ref. 1 ), the hypothesis that the 
r- mesons and X- mesons are different particles, 
and not different modes of decay of a single parti­
cle. Such a conclusion possible follows from the 
analysis of nuclear disintegrations in which heavy 
unstable particles are produced2 • 

* In determination of the decay energies of both 7"­

mesons, several differences in the stopping power of 
emulsions of type R and type G-5 were taken into ac­
count. In order to carry out the corresponding correc­
tions, we measured the track lengths of 1 1 OfL·mesons, 
produced in the decay of 7T- mesons which stopped. The 
mean length of track of these fL- mesons was ( 584 
± 2.4 )fL, which differs by 2% from the value in G-5 
emulsions. 

1 R. H. Dalitz, Phys. Rev. 94, 1046 (1954). 
2 Gramenitskii, Zamchalova, Podgoretskii, Tret'iakova 

and Shcherbakova, J, Exptl. Theoret. Phys. (U.S.S.R.) 
28, 616 (1955); Soviet Phys. JETP 1, 562 (1955). 
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THE present article is concerned with the con-
. sistent application of the counterterm technique 
for mass renormalization in the Tamm-Dancoff 
method (.abbreviated as the TD method). Be­
cause of the mathematical difficulties that arise, 
we also consider a renormalization method which 
does not require separation of the counterterms. 

Mass renormalization in the TD method is usually 
accomplished h)' separation of the counterterms in 
the Hamiltonian 1 

H = Ho (Mt, fLt) + H' = H0 (M, fL) + H' + 'f!.H', 

H' = ig1~ (x) Yo 't'qJ (x) ljl (x), 

where M 1 and fLt are bare masses, and M md fL are 

renormalized masses. The equations of motion for 
the amplitude A are then given by the relationship 

i'f!.A I 'f!.a=[A, H'J +[A, 'f!.H']. 

The state vector of the system is resolved into 
states with different numbers of free particles (but 
possessing renormalized mass), and all amplitudes 
with a number of particles smaller than the given 
number are taken into consideration in each ap­
proximation of the method. 

I.E. Tamm has noted that there is usually some 
inconsistency in the manner of application of these 
amplitude selection rules. These rules are strictly 
adhered to in relation to terms arising from H' in 
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the equation for A, whereas some of the terms as­
sociated with oH' are simply dropped despite the 
fact that they contain terms which should he con­
sidered in a given approximation. This procedure 
corresponds to the Levy-Klein procedure (the re­
tention in the integral equation kernels of only the 
lowest order terms in gi) but is, strictly speaking, 
in contradiction with the TD method. Mass re­
normalization is considered below for the one­
nucleon problem in the lowest TD approximation 
with the inclusion of all essential amplitudes. 

Without dwelling on the details of the calcula­
tion ( see Ref. l) we shall present the final re­
sults (the meson counterterm can he neglected in 
this approximation): 

<<¥ (x))1 = ~ S R (x- x') [ig1Y5''t" <<Ji (x') cp (x')>r (l) 

+ 3M (<jJ (x'))1,) d4x', 

<<Ji (x) q> (x)>t = gl ~ r (x- x') <<Ji (x')>t' d4.x' (2) 

+3M~ SR (x- .x') (<jJ (.x') 9 (x))1,d4x'. 

Here 

S R (.x) = -- 1 +; (x) S (x), 

1 r (x) = 2 E (x) [S+ (.x) ~ (- .x) -S (x) M (- x)) YsT. 

In the solution of this type of equation the terms 
with oM in the equations of intermediate ampli­
tudes [in this case the last term in Eq. (2)] were 
usually dropped. The term with oM was retained 
only in the equation of the principal amplitude, 
where it ,compensated the divergence. 

Retaining both terms with oM in (l) and (2) we 
first solve (2) with respect to < cp(x)tfi(x) >t ; this 
is easily accomplished because of the different: 
kernel contained in (2). Substituting this solution 
in (l) we obtain 

(<jJ (x)> 1 = ~ S R (x- x') [~ 9Jl (x'- x") <<Ji (x"))1, d4x'' (3) 

+ 3M <<Ji (x')>t'] d4x', 

where the Fourier representation of the mass opera­
tor Wt is 

(4) 

A transition is easily made from (3) to the equation 
[where t/J(p) is the Fourier transform of 
<tjJ(x)>t]: 

[iyp-!- M-!- 3M -1- (2rr)4 9Jl (p)]· <)i (p) = 0. (5) 

We now transform to the system in which the 
nucleon is at rest ( p = 0 ). For the mass renormal­
zation oM must now he chosen to satisfy the re­
lationship 

3M -1- (2rr)4 9Jl (p0 ) = 0 where Po=- iy0M. (6) 

When the term with oM in (2) and (4) is dropped, 
this gives the usual result ( L is the cutoff 
momentum): 

M1 ""giM ln (LIM). (7) 

When all terms with oM are taken into considera­
tion (4) becomes 

L 
\ 1 +a (3M)3 

jk2 -!-b(3M)4 kdk, 
0 

where a and b are constants and oM is given by the 
expression 

(8) 

Thus in the simplest case considered above, the 
inclusion of all essential amplitudes in mass re­
normalization does not give rise to any additional 
difficulties. But it does lead to a change in the 
character of the divergences of the theory; for this 
reason considerable care must he used in perturba­
tion theory renormalization in the TD method. 

When all amplitudes with oM are retained in a 
more ccrnplicated problem such as the scatering of 
mesons by nucleons the equations of the inter­
mediate amplitudes are very complicated and can­
not be solved explicitly. 

We shall therefore consider <mother method of 
renormalization which js not associated with 
separation of the counterterms hut which is based, 
instead, on the direct use of the relationships he­
tween the hare and renormalized constants (see 
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Ref. 2 ). The Hamiltonian remains expressed in 
terms of the bare masses; the sta~ vector will 
therefore be resolved into states with different 
numbers of particles possessing bare masses. For 
this reason the solution of any problem concern­
ing particle interactions will be expressed in 
terms of bare constants, and, in addition, relation­
ships will be required between these constants and 
the renormalization constants in order to express 
the solution in terms of observed quantities. For 
this purpose it is essential to solve another prob­
lem along with the fundamental problem, that is, 
the problem of the "envelopment" of an isolated 
meson and nucleon, i.e., their interaction with 

their own field. 
The latter problem may Le reduced to the follow­

ing equations (in the lowest approximation of the 

TD method): 

(;v -~- M1) (<j; (x))1 =- ig;,-r (r;> (x) <]; (x))1 
(9a) 

~' -- S 9)1 (x- - x') <Y (x')) 1. d4 x', 

2 -
(0- !1-1) (tp (x)>t = ig-r (Y&)p.v <tJI,. (x) '-fiv (x)>t 

== ~ P (x- x') (rp (x'))1, d4x'. 

Transforming to momentum space and using the 
definitions 

IV' <<Ji (x)>t =-M <<.fi (x))1, 0 (rp (x))1 = fL 2 (tp (x))1, 

we obtain equations which enable us to express M1 

and p. 1 in terms of M and p. : 

(10) 

We note in explanation that the mass operators 
~t and the polarization operator P in (9) depend on 
bare masses, whereas their Fourier representations 
!11 (p) and P (k) enter into (10), in which we have 
put iyp= -M, k 2 = -p. 2 • The divergent integrals in 
!Dt and P are cut off by the substitution 

L' 

(p2 + M~)-2 ~ 2 ~ (p2 + x)-a dx. 

M2 
1 

As a re:;ult of the simultaneous solution of Eqs. 
(10) the following relationships ar,e obtained (A 

= g~ I 4172 ): 

(ll) 

__ M (1- 1.) (4- J.) + 31. (41.- 3) In J. + O (~) , 
M1- 4(1-J.)2+6-J.(1-J.)lnJ. L2 

It is in1portant to note that the bare nucleon mass 
and oM are finite and different from (7). This re­
sults from the fact that the meson distribution func­
tion appearing in the mass operator contains in 
its denominator the square of the bare meson mass, 
which increases with L: 

L' 1 

\ dk 2 \ dx 2 k 
l~r: J k 2 -1- 1.[2 + fL 2 = .) x2 + J. ' x = T · 

0 0 

Passing now to the scattering of mesons by 
nucleons, we confine ourselves to a state with 
isotopic spin I = 3/2, since in the state with 
I = 1/2 the mass operator is more complicated 
than in (9). The meson-nucleon equation is 1 : 

(12) 

+ ~ (K1 + K2) (rp (x') '-fi (x"))1, dx' dx" dx"', 

where K 1 represents the self-energy kernels corre­
sponding to (9), and K 2 represents the scattering 

kernels; both of these are expressed in terms of 
the bare masses. 

The renormalization of (12) reduces simply to 
the substitution in (12) of M 1 and p. 1 expressed in 

terms of M and p., using the relationships in (ll). 
In some of the propagation functions which corre­
spond to scattering, M 1 and p. 1 are simply re­
placed by M and p. due to "envelopment" of the 
corresponding lines. There will also appear, how­
ever, the propagation functions of the "undeveloped" 
particles to which the bare mass corresponds. To 
the last category belong, for example, the propaga­
tion function of a nucleon which has already emit­
ted, but not yet absorbed, a meson; the inclusion 
of four-particle amplitudes would correspond to its 
"envelcpment", i.e., a higher approximation of the 
TD method. 

As a result of the use of the above-described re­
normalization method a solution is obtained which 
does not contain infinities but which is in general 

different from the usual solution 1, in which re­
normalized masses correspond to all propagation 
functions. 

After the mass renormalization in the TD method 
it is still necessary to renormalize the charge; the 
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associated difficulties are also inherent in the 
method here described. This hampers the compari­
son of the solution of (12) and of the expression 
derived therefrom for the scattering phases, etc., 
with the results obtained by the usual renormaliza­
tion method 1• 

I wish to express my profound gratitude to Acade­
mician I. E. Tamm and to his collaborators for 
their discussion of this note and for valuable sug­
gestions. 

1 Si!in, Tamm and Fainberg, J, Exptl. Theoret. Phys. 
(U.S.S.R.) 29, 6 (1955); Soviet Phys. JETP 2, 3 (1956). 

2 M. Neumann, Phys. Rev. 85, 129 (1952). 
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I T has recently been clearly established that the 
/3-interaction is a mixture of the scalar and 

tensor types. The scalar interaction constant has 
been determined by measuring f t for the /3-decay 
of 014 to N14 2. The nuclear matrix element of 
13+-decay of 014 can he obtained by an exact 
theoretical calculation since this is an 0 +-+ 0 + 
transition with identical nucleonic wave functions 
in the initial and final nuclei. 

The tensor interaction constant cannot he de­
termined directly from /3-decay since the matrix 
element for the tensor type cannot be calculated 

exactly. In this case the spin direction of the 
decaying nucleus is c.hanged, and since spin-orbit 
coupling and the relative orientation of nucleonic 
spins play an important. part in nuclear interactions 
the nucleonic wave functions of the initial and 
final nuclei will differ. I3ut since we must know 
the form of the initial and final nucleonic wave 
functions in order to calculate the matrix element 
of the nucleus, whereas the exact form of a nucle­
onic wave function in the nucleus is unknown, the 
matrix element for the tensor type ~f /3-interaction 
cannot be calculated exactly. 

The only nucleus for which the nucleonic wave 
functions are known well is the deuteron, which is 
not f3-active. However, it is possible to determine 
the tensor interaction constant directly and inde-

pendently of the scalar interaction constant by 
measuring the cross section for the absorption of 
an antineutrons by a deuteron: 

D + v--+ n + n + e+ (I) 
'"" ( v denotes a neutrino and v an antineutrino ). This 

process, as is indicated by an estimate given be­
low, has a cross section which is smaller by an 
order of magnitude than the p + !)'-+ n + e+ cross 
section; this process has apparently been observed 
by the annihilation radiation of the positrons. The 
cross section is of the order of magnitude 10-44 
cm2 . 

The present note deals with the determination 
of the antineutrino absorption cross section for 
deuterons. 

The following simple considerations show that 
the scalar interaction makes a small contribution 
to the cross section as compared with the tensor 
interaction. The neutrons emitted in process (I) 
will possess very small velocities since the 
larger part of the energy evolved in the interaction 
is borne off by the electron. We can therefore as­
sume that both neutrons are formed in an S-state. 
By the Pauli principle the spin part of the wave 
function for the final state of the neutrons must 
be antisymmetric, i.e., the neutrons spins must 
be antiparallel. The spin part of the deuteron 
wave function is symmetric--the nucleonic spins 
in the deuteron are parallel,. Consequently, the 
relative direction of the spins must be changed. 
This is possibly only by a tensor interaction type 
and is impo$sible by a scalar type. 

For the purpose of obtaining the differential 
cross section of process (I) the deuteron wave 
function was taken in the usual form; the wave 
function of the final state was made antisymmetrical 
in all variables of the neutrons. 

For the differential cross sections, summed over 
all polarizations of the final states and averaged 
over all polarizations of the initial states of the 
particles, the following expressions are obtained: 

2m< 2 ( 1 1 ) 
da.s = (2rt)5 Os x2 + p~ X2 + p~ (l) 

2 EeEv- PePv plEl dolpeEe doe dEe 

EeEv 1 - (£1P2/ P1£2) COS til. 2' 

da,. = 2rtx 02 { 2 
(2rt)s T (x2+Pi)2 (2) 

+ 2 + ( 1 -- _1_)2} 
(x2 + p~ )2 x2 + Pi x2 + p~ 

X 
EeEv + 1/s Pe Pv 

l;~Ev 

p1E1 do1peEe doe dEe 

1- (EIP2IP1E2) cos 61. 2 • 


