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IF the effective mass method (E.M.M.) is used 
in the polaron theory\ one must solve an 

auxiliary equation for a ' ' smoothed out" wave 
function 

. ( 'li.2 ) - 21-L A+ W <p = E<p; 

where p. is the effective mass of an electron. The 
polarization potential W (r) in Eq. (1) is not 
computed from the exact wave function (the so
called detailed wave function) of the polaron 
t/J ( r) = Iakt/Jk(r) ( t/Jk is the Bloch wave function), 

i.e., not as wlt/JI = -e 2cf lt/J(r'),l 2 dr' but from a 

lr- r I 
''smoothed out" function c:p(r ). Such smoothing 
out of potential which brings Eq. (1) into a self
consistent form, introduces a definite error into 
the value of the computed energy. The purpose of 
the present letter is to evaluate the enur committed 
when the criterion of applicability of E.M.M. r 
>> a ( r is the polarization radius, a is the se~a
ration Pbetween neighboring ions) is barely met. 
Such is the case for the majority of the alkali
halide crystals. 

Applying perturbation theory, we obtain for this 
error 

£1 = ~ (W11j11- w1"'1) 1 'P 12 d-. (2) 

= - e2c \ I tjl (r') 121 'Jl (r) 12 d-. d-.' 
J I r-r' I 

We neglect here the dispersion of the crystal and 
the dependence of its polarization on the wave 
length, assuming c = 1/n2 - 1/E = const. Because 
of considerations discussed by Tolpyg2 we shall 
start from the approximation of strongly bounded 
electrons, according to which 

h = ~ elkntjla (I r- n j), 
n 

where n is the radius vector to the center of a cell 
coinciding with the nucleus of the positively 
charged ion. Pekar1 used a variation principle to 
repl~ce t.he integration of Eq. (1) and, as an ap
proxlmatwn, the following function may be used: 

<p (r)= a.'l• (1 + a.r. + (rx.r)2 + (a.r)s) e-«r 
Vss" 21 3! • 

where a. is determined by minimizing the corre
sponding potential which yields 

a.= 0.821 (fL/m) cfa(J, 

where a0 is the Bohr radius. 
The second term of Eq. (2) is integrated directly 

after the substitution of c:p(r). The result is 
0.2613 e 2c a. and, after substituting t/J(r) 
= '2 akt/Jk(r), the first term of Eq. (2) has the form 

k 

~ w11j111 'P 12 d-. 
(3) 

= A~ <p (n) <p• (n') 
n,n' 

X ~ .Ji: (I r'- n' I) .Jia (I r'·- n I) w1"'1 (r') d-.', 

where fl. is the volume of the elementary cell. 
We further demand (analogously to Tolpyg2) that 

W (r) be expandable in a series of ( r- n) within the 
boundaries of each cell. After substituting such 
expre~sions into Eq. (3) we obtain for the case 
n=n 

The last expression is computed by passing from a 
sum over n to an integral. The terms with n I== n' 
in Eq. (3) are computed on the assumption that 
the maximum value of the integrand in the overlap 
integral lies midway between the lattice points, 
which follows from symmetry consideration. W (r) 
is expanded in orders of I r - % ( n + n ') I· The 
numerical calculation was carried out for the 
sodium salts. The function t/J a was approximated 



786 LETTERS TO THE EDITOR 

with sufficient a: curacy from the data of Fock md 
Petrashen 3 • 

The result is 

£1 = (0.01873 ·10-16ot2 + 0.07221)(10-32 ot4 + ... ) e~cot. 

For example, for the crystal NaCl o.= 1.109 

x 108 and the error in Pekar's 1 energy evaluation 
due to smoothing out of the potential is about 15%, 
which lowers the computed energy value after Eq. 
{1) is brought to a self-consistent form. We note, 
however, that using the approximation of strongly 
hound electrons increases somewhat the estimate 
of the energy error, and in reality this error is only 
about 10-12% for NaCl. 

Tolpyg2 considered higher order terms in the 
E.M.M. and showed that the E.M.M. of Pekar 
overstates the energy values, for NaCl in particu
lar by 12-13%. Thus, the above errors are 
approximately equal and in opposite directions, 
which verifies the applicability of E.M.M. for cal
culation of energies, even when r is greater than 

p 
a by a factor of 2 or 3. 

The author expresses a deep gratitude to K. B. 
Tolpyg for his help in carrying out the present 
work. 
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cOLLISION of the antiproton with the proton 
and the annihilation of both particles results in 

the liberation of not less than 1.8 x 109 ev (if 
the velocities of both particles are small). This 
energy is sufficient for the formation of 13 rr
mesons. It seems natural to apply to the investi
gation of stars of such high energy the statistical 
theory of multiple particle formation (see Refs. 
1 and 2). The theory of thermodynamic variants 
leads to the following formula for the complete 
number of the formed particles2 •3 • 

N = k (E 1 Mc2), (l) 

where M denotes the mass of the nucleon 
and k is a coefficient determined from ex
periment. For large energies( E 2: 10 12 ev )k"-'2. 
If this value of k is used with the energies of inter
est, N "-' 2. For such a small value of N the ap
plication of thermodynamics is not justified and 
we, therefore, turn to a variation of statistical 
theory suggested by Fermi 1 for the investigation 
of stars with the formation of not too many parti
cles. 

We shall start with the following formula (see 
Refs. 1, 4 and 5 ): 

The value of S (n) determines the probability of 
meson formation, n the effective volume in which 
the energy of the colliding nucleons is concen
trated and where the formation of particles takes 
place, E 0 the full energy of star formation, 

Wn ( E 0 ) = dQ n( E 0 )/dE 0 , Q n(E) the volun,e of the 

momentum space corresponding to the energy E 0 , 

fn' T a factor accounting for the conservation of 

isotopic spin and the equivalence of particles 
(see Refs. 4 and 5), T the isotopic spin of the 
system. The effective volume was taken as 
(4rr /3 )(-h / p. c )3 , where p. is the mass of the rr--

meson. Justification for this selection was the 
fact that similar computations for multiple forma
tion of particles for p-n and rr- -p collisions re
sult in a satisfactory agreement with experiment 
when the same expression is used for the evalua
tion of the effective volume 6 • It should he noted 

that the energy E 0 in these cases "-' 1 hev, i.e., 
not strongly different from the energy"-' 2 hev under 
consideration. 

The magnitude of W (E ) has been computed in 
n 0 

Ref. 7 with consideration for conservation of 
energy and momentum hut on the assumption that 
the formed particles are ultrarelativistic. As it 
will he showt further this ass~tion is approxi-


