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The character of the resonance can be seen in 
the sketch, where is shown R(H) I R0 versus 
UJifl=mcUJI eH for various ratios of UJ to l/t0 , 

in the simplest case of an ellipsoidal Fermi sur
face with lIt 0 independent of p x • 

The conclusions reached above are also valid 
when several zones are present. An experimental 
study would in principle allow one : (a) to find 
out, from the existence or not of the resonance, 
whether the surface E (p) =E 0 is closed, (b) to 
determine the degree of filling of the zones, i. e. 
how far the Fermi surface differed from ellipsoidal 
shape; (c) to establish the speed of electrons at 
the Fermi surface (4), by determining from H re 9 

the value of (dSI dE) e t. In the presence of sev
eral surfaces, we can determine the speed on each 
in turn; in equation (4) only (dSI dE) ext enters. 
Note that here we discuss only the main s~rfaces, 
not the anomalously small zones.s 

The authors thank I. M. Lifshitz, L. D. Landau 
and M. I. Kaganov for discussions. 

"'8! r-Hm'l•h-ln-'1• -10-s H <t_1. In semicon
ductors, where diamagnetic resonance is vbserved, 
81 r ~em (I e [ t0)-l (nkT)-''• ~ 1 (t0 - time of free 
path, n-densxty ot electrons,UJt >> 1, UJ-angular 
frequency of electromagnetic fielJl, T- temperature). 

**Unfortunately, diamagnetic resonance has often 
been called cyclotron resonance in the literature. The 
-fresent nomenclature seems more appropriate. 

**It turns out that near resonance, for a non-quadratic 
law of dispersion the complex tensor B 'k. can be reduced 
to principal axes. For a quadratic law 'o1 dispersion 

E (p)=Y:zf-LikPiPk and 1 / t 0 independent of Px , this is 
eossible for all UJ and H, and equation (2) is valid for 
6 < < 7< l and becomes an interpolation formula for all 
H <t. v V-21tm0n -106 G. 

****The derivation ot these equations, and detailed 
discussion of some further points, will be the subject 
of a separate article. 

Note added in proof: Quite recently a paper has 
appeared 6 on a resonance in bismuth: this is to be dis
tinguished from the resonance discussed here, since the 
latter (1) occurs at multiple frequencies, (2) occurs in
de pendently of the sign of the magnetic field, (3) occurs 
only for magnetic fields exactly parallel to the surface 
of the specimen (the anglecpmust satisfy cp> (8lr)215), 
In particular, condition (3) is not fulfilled in the work 
referred to. 
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I N a previous paper we have developed a theory 
of galvanomagnetic phenomena in strong mag

netic fields, treating the electrons classically as 
Fermii>articles with a general dispersi>n law E=. 
=E (p). 1 There, however, we did not treat certain 
specific phenomena connected with the quantisation 
of the electronic energy levels (for example, the 
oscillations in resistance as the magnetic field 
chan§es). Such effects are observed experimen
tally , but previous theoretical investigations 3 are 
not entirely satisfactory. In the present paper we 
shall construct a consistent quantum-mechanical 
theory of metallic conduction in a magnetic field. 

1. In quasi-classical approximation, the spacing 
of levels in a magnetic field in the z direction is 

. b 4 g1ven y 

• e1i . 
fl.= m*c' 

as 
27tm*= (fi:, 

(1) 

where S~ (E ,p z) is the area cut by the surface 
E (p) = E m the plane p =constant. Thus the 
essentially quantum-mezchanical effects appear 
when f-L * H""kT. 

The Hamiltonian U of an electron in a magnetic 
field Hz =H and an electric field E may be written 

• 
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;J6 = ;J6o + Lr; lJ =- eEr, (2) 

where jjo is the kinetic energy operator of an 
electron in the magnetic field. This is obtained 
(at least in the quasi-classical approximation) 
from E (p x , p Y. , p z ) by substituting foc the mome.ntum 
components of the kinetic momentum operator satis
fying [ p , p ] = eH I c , suitably symmetrized. 
The exacT s1gnificance of this need not be dis
cussed in this approximation. 

According to the quantum theory the el~ctronic 
state is described by the den~it~ matrix f. In the 
absence of an electric field, f = f 0 is the equili
brium Fermi distribution. 

W~n the electric field is pres~nt, we put f= f 0 

+ f . The kinetic equation for f 1 is given by 

or including only terms linear in E 

rv 

where W / t 0 is a certain linear transformation, 
corresponding to the collision integral, and t 0 
has the nature of a relaxation time. The operator 
f 1 is diagonal with respect top z but not with 
respect ton. Equation (3) when written in terms of 
matrix elements becomes 

fi:,- ~~ 
= -eEvn n' , . en,-en 

where v n n' is the matrix element of the velocity 
which corresponds to the classical quantity 
v=dEidp. From equation (l) we have E ,_£ 
= ( n '- n) 11 *H. Thus assuming that [ 1 :_ etn 0Ev;; 
we get after some transformation 

4 -

ik'¥,, + yW~<. k''¥k, = yghvk; 
(4) 

y = lf~/lf; 

k =I= 0; go= iJfO I iJ£. 

In the quasi-classical approximation, the matrix 
elements vk are the Fourier components of the 
classical velocity vector v expanded in terms of 

eik¢, where ¢ is the angle variable around the 
orbit in momentum space 

cp = 2TC - -- ;] dl = I dp /. ~ dl I~ dl 
v.l v.l 

v .l = V v~ + v;. In the limit h -o, ( 11 * H -o) 
we have gk ->df 0 I dE , and equation (4) becomes 
the classical equation for the Fourier components 
of the distribution function If, . The quantities 
W k k ' in this case become the Fourier components 
of the collision operator. At low temperatures 
where impurity scattering is predominant, W k k' 

in (4) coincides with its classical analogue.' 
Similar substitution is not however permissible 

for the quantity g k when 11 * H "' kT. 
The expressions for the current j and the con-

ductivity a xx' are given by the formulas 

(5) 

In the limit 1i -->0 the expression (5) also tends to 
the corresponding classical formula. 
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2. The connection established above between 
the quantum-kinetic Eq. (4) and its classical _ 
analogue allows us to find an expression for the 
quantum effects by means of the solutions of the 
classical equations investigated earlier 1 , and in 
particular to clarify the connection between the 
quantum oscillations of conductivity and their 
mean values, and also the oscillations in sus
ceptibility (de Haas-van Alphen effect). Omitting 
all calculation and discussion (which is rather 
lengthy) we shall give here only the results 
obtained. 

Let us write the expression for the classical 
conductivity tensor in terms of the 'mobility 
tensor'' qx,x '= qx,x' (E,p , H) (the value of 

' z 
q x,x is obtained from the solution of the classical 
problem): 

Here N ° is the number of electrons in the con
duction zone, and qx,x' is the mean value of the 
mobility, taken with the weighting factos f. 0 

Then th,.e expression for the oscillating part 
ila x,x (for x,x' I= z, z) may be written in terms 
of the independent variables H, ( as 

( ~crx, x') - qx, .~'H(a ln S ;:at) ~.1W (7) H, 1;- m • m • 

where !1M z denotes the oscillatory part of the 

moment M z in the ,de Haas-van Alphen effect and 
the values q x,x and ( d ln SIdE) are taken 
at the extrem~ cross-section of the Fermi surface 
E (p) = ( by the planes p z = const. An analogous 
expression for !1 a xz, not given here, contains 
Lla zz and also d !1M z I dH . 

As is known 4 each zone tor more precisely, 
each extreme section of the Fermi surface) gives 
a separate contribution to !1 M z , and in fields 
"- 104 G only anomalously small,zones show 
themselves. 4 Note that in a x,x the major con
tribution is from 'normal' zones, which compli
cates comparison of Eqs. (6) and (7). 

In comparing with experiment, we must also 

take account of the oscillations in the chemical 
potential ( = ((H), which are determined by the 
conditions that the total number of electrons in 

all . zones remain constant. Taking account of 
the additional term ~crf· ,,. = (a<!x . . r' 1 a~)~~ , we 
obtain finally for the case where several con
duction zones are present. 

(8) 

(the summation to be taken over all zones). 
Thus, for example, for a single zone with a 

small number of electrons and an isotropic dis
persion law E = p 2 I 2m, qxy = ec 1 H ( 1 + y 2), 

and we have: 

~a·~Y a In t ~Mz 
- 4 / y2 0 H · t t (") aXY - . a ~ . AO , o = o '- . 

The presentation of other results and also the 
mathematical treatment will be the subject of a 
detailed communication later. 

The author is grateful to L. D. Landau for 
valuable discussions. 
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