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linear term of its expansion in wave vectors of 
the external field q/1r has the following form 
['q=qcx.ycx.; q':::(q;iq0 )]: 

A; =(rr 2 / 2m)F (y;q -- qy;) · (l) 

The coefficient F serves to specify the raliative 
correction to the magnetic moment, i.e., 

AfL 1 fL = (oc f2rr)]F. (2) 

For IA0 1 = oo, we have F = l, and Eq. (2) is just 
the Schwinger formula. For finite ,\0 , we can write 
F = l - fJF(,\ 0 ), and hence 

AfL I fL = (oc I 2rr) [1- 8F(Ao)]. (3) 

F is expressed by integrals in momentum space of 
the form 

( p 1 and p 2 are the initial and final momenta of the 

meson and p 2 - p 1 = q ). Instead of integrating 

over a finite region one can retain the infinite in
tegration limits-and introduce Feynman's 3 

truncating factor ,\~/,\~ + k 2 • Then 

J (Ao) = J (oo)- a! (A0 ), 

where 

\ d4 k [1; k 0 ; k 0 kT )· 
81 (Ao) = J (k2- 2plk) (k2- 2p2k) (k2 + ).2) . 

Continuing the calculation in the usual manner3 •4 , 

we obtain for the apex the following expression 

A; ().0 ) = Ai (oo)- Mi (A0); 

1 1 

= ~ 2x dx ~ dy {(1-y- xy) qyi- (1- x + xy) Y;q} 

0 0 

where 

p y = Y P1 + ( 1 - Y J P2-

Let us first perform the integration over y. Since 
we are only interested in terms linear in q, we can 
substitute p 2 =- m2 for p2 in the integrand. Then 
Eq. (4) assumes the form 6f Eq. (l), viz., 

where 
1 

~ (1-x)x 2 
'!SF (A0 ) = 2 ___,~-'c---,---'-,--,-,--- dx 

x 2 + (A0 I m )2 ( 1 - - x) 
0 

(5) 

,= 1 + 2v- y (·r + 2) In _l_ 
' '( 

_ y2 + 4y + 2 In 1 + Yr:t4/Y 
Y1+4iY 1-Y1+4'r 

( Y = ,\ 20Im 2 ). Wt'th y '' l the value of the 1. tegral // ' n 
is 

(6) 
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I N the electrodynamics of the electron Abrikosov 1 

has shown that the interaction with the electric 
field leads to the appearance in the Green's func
tion of the electron in the infrared regjon (lp 2 -m 21 
« m 2) of the additional singularity 

( m2 )(e'f2rt) [3-dt (O)l 

p2-m2 
(l) 

as compared with the simple pole for the Green's 
function of the free electron. An analogous in
vestigation in the electrodynamics of spin zero 2 
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shows that the same singularity arises in the 
Green's function of a charged scalar particle, 
where the result obtained coincides exactly with 
(l). Hence, it seems worthwhile to present are
sult from which this effect would follow independ
ently of the nature (spin) of the charged particle. 
The present letter is devoted to this question. 

The Green's function of the particle is defined· 
in the usual way: 

G (x, x') = < (~ (x), ~ (x'))+>o 

The brackets indicate a time-orrered average over 
the vacuum, t/1 (x) is the particle field operator, 

tjJ ( x) is the adjoint operator. The operations of 
..J ~ 

conversion between t/1 and t/1 are evidently Hermi
tian conjugates. 

The Fourier components of G ( x, x ') in the re
gion p2 "-' m 2 are d~termined by the matrix element 

.<0 I t/J ( x) I p >, where p 2 "-' m2 • In other words, in 
the Fourier expansion of the operator t/J(x), it is 
sufficient to determine only the part of the spectrum 
of t/J(p) where p 2 "'m2 • In the state in which p2 

"'m 2, there is a single particle interacting with 
the electric field, and the magnitude f'>.. = I p2 

-m2 1 m- 2 is a measure of the energy of the photons 
which this particle may emit or absorb. We make 
the assumption, justified below, that for the ef
fect under consideration only a connection with 
the low frequency part of the electromagnetic 
field is necessary. Choosing a system of reference 
in which the motion of the particle is nonrelativ
istic, we may write the nonrelativistic Schrodinger 
equation 

i 0·<jJ0~x} = {m + eA0 (x) + 2~ (p- e'A (x))2} <jJ (x), (2 ) 

where p =-i \J. This equaion is correct for the 
description of the interaction of the "free" part 
of the Fourier expai).sion of t/J(x) (p 2 rv m 2) with the' 
low frequency part of the electromagnetic field. 
Neglecting terms quadratic in the field, since, as 
may be shown, they give rise to a higher order 
contribution in the final result, we substitute into 
Fq. (2) 

t t' 

1 
~ ~ 0 (-r'- -r) [AI'- (x,-r), 

I (t t') = 
, t f' 

- ~ ~ 6 (-r- -r') [A,_ (x, -r), 

[AI'- (x), Av (x')) = - 47ti31'-vD (x- x'); 

t 

9 (x, t) = P.., exp {- i ~ jp.AtJ. (x, -r) d-r} h (x, t), 

where P.,. is the time-ordering operator and jfl 

=I e, ev!*. The operator t/J..0(x, t) satisfies the 

free particle equation 

iO~o I at= (m + p 2 I 2m) l.ji0• 

(3) 

In the approximation e 2 «I we may consider 
Afl (x, r) in Eq. (3) as the free-field operator; 
hence, t/1 0 and Afl commute. For the Green's func-

tion G (x, x') (more exactly, for the "free" part 
p2 ""m 2 in the Fourier expansion) we obtain 

t 

G(x, x') = G0 (x, x') < P ..,P.,. '( exp {- i ~ ji'-AI'-(x, -r) d-r} 

t 

Xexp {i ~ ~vAv (x', -r') d-r'} )/o, 
where G 0(x, x ') is the free particle Green's func
tion. 

Using the formula 

exp(A+B)=exp(A)·exp(B)·exp(- ~[A, B)), 

which is correct when there exists a number [A,B ], 
and taking an average over the photonic vacuum, 
we obtain the following simple transformations: 

G (x, x') = 0 0 (x, x') (4) 

t t 

Xexp{- ~ [~~ ((A"'(x,-r), Av(x,-r')+>ojp.jvd-rd-r' 

t' I' 

+ ~ ~<(A"' (x', -r), Av (x', -r')}+) 0 j "'jvd't d-r' J 
t t' 

+ ~ ~ ((AI' (x, -r), A, (x', -r'))+)0 j !'Jv d-r d-r' + I (t, t')}, 
where 

(5) 

Ay(x', -r')) jvju.d-r d't'; t < t'. 
<(Ap. (x), Av (x'))+)0 = 47tD fp.v (x- x'). 
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The assumption of adiahaic cessation of the 
interaction 

e = e(t) = {e, 

e exp a.t, (To--->-co) 

allows us to neglect the values of all the integrals 
taken at the lower limit. In particular, Eq. (5) 
depends only on the lower limit, and hence is 
equal to zero. Carrying out the integration with 
respect to d'Tand d'T' in Eq. (4) in the indicated 
manner, and varying Eq. (4) with respect to oe 2 , 

we take the Fourier component of the resulting re
lation in the momentum region I p 2 - m2 1 « m 2 

which is of interest to us. We find 

+ (vk~)~ dt(k2)J d4k } 
w 2 (k2 + iE) • 

The calculation is most simply carried out in 
the system of reference in which the velocity of 
the particle v = p/m is equal to zero. Then 

80(p)= i 8:
2 {~[O(p)-O(p-k)] [(1- ~~) 

Carrying out the integraion with respect to dw ac
cording to the usual rules of contouring3' we find 

that the terms sought are obtained by taking a cal-
culation at the point k 2 = 0: -

8e2 { r 
80(p)=,;:;r -' [O(p)-O(p-k)]dlkl\[3-d (0)]· 

'" • I k I I 1 • 

(w=+lkl). (7) 

The essential logarithmic fe!#on of interaction in 
this integral is I p 2 - m2 1 / m « k « m. The 
region of high frequencies leads to renormalization 
effects, which, naturally, cannot he correctly taken 
into account in this technique. Carrying out the 
integration in (7) for low frequencies, we obtain 

80 (p) = 0 (p) ( ~;) [3- d1(0)]ln ( p 2 : m2 ) 

or 

( 
m2 )(e'/2rt) [3-d 1 (O)l 

0 (p) =Go (p) 2 2 
p -m 

where G0 (p) differs from the Green's function of a 

free particle by the renormalization factors. Thus, 
the appearance of the additional singularity (l) in 
the Green's function of a particle interacting with 
an electromagnetic field is connected only with 
the classical properties of the electric current 
being produced by the particle in its uniform motion. 

In conclusion, I wish to express my deep grati
tude to A. A. Ahrikosov and I. 1\1. Khalatnikov for 
discussions of this work. 

• Designations are those used in Ref. 3. 
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I~ studying the processe_s which take place dur
mg the passage of He+ IOns through rarefied 

gases, we noted that negative ions He- occurred 
in the beam after it had p-assed through the gas. 

The experiments were carried out in the double 
mass spectrometer arrangement described in Ref. 
l. A beam of He+ ions of given energy was 
separated by the magnetic mass-monochromator, 
after which it entered the gas-filled collision 
chamber. For a gas pressure of rv 3 x 10-4 mm Hg 
in the chamber, we can k~ the pressure in the 
remaining parts of the apparatus at a level < l 
x I0-5 mm Hg. The composition of the beam which 
has passed through the ~ollision chamber is in
vestigated by means of a magnetic mass analyzer. 

If we admit a beam ofF~+ ions into the collision 
chamber and select a suitable intensity of mag
netic field in the mass andyzer, we can pass 
through it fle + ions which will retain their charge 
and their velocity after the passage. On reversing 
the direction of the m~netic field in the mass 


