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width of l/ 11 enters into the cross section. This 
circumstance is due to the wave properties of the 
IT-mesons. Actually, in the region effective for the 
process (in front of the nucleus) the tj; -function 
of the es:Eping meson has a shadow and the entire 
process is determined within the region of the 
penumbra. 

If we set Tf max = oo, then 

The preceding considerations were based on a 
specific mo~l of the nucleus, viz., an "absolutely 
black" sphere of radius R. Employing a method 
developed in Ref. 2, one can generalize the problem 
to any arbitrary law of interaction between IT

mesons and nucleons. The correction for semi
transparency which occurs for the case of strong 
absorption by heavy nuclei is of the order of 
l/11R to the cross section for "black"nuclei. 

The author expresses his sincere gratitute to 
I. Ia. Pomeranchuk for his valuable advice and 
continuing interest in this work. 
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T flF general theory of the correlation phenomena 
which depend on the law of conservation of the 

total angular momentum has been considerably 
developed in l1efs. l-3. 

We have obtained the tensor momenta (see the 

determination below) for the two body problem in 
the most general case, when the incident and 
scattered particles and the particles of the target 
are in· arbitrary spin states (for example, polar
ized). 

The diagonality of the S-matrix with respect to 
the total impulse, total energy E, total angular 
momentum I and its projectim M is made use of, 
and the. transformation theory of Dirac 4 is applied 
S)Btematically. The advantage of such an ap
proach lies in the fact that it establishes a direct 
connection between its results and the conserva
tion laws, allows errors and inex:actitudes to be 
avoided more: easily than in other approaches2-5 
and allows a direct generalization to the case of 
reactions involving more than two particles. 

The reaction a+ b-+ A + ()was considered. 
Particles A and ()are in general different from a 
and b. All the partie les have spins and rest 
masses not equal to zero (they could be either 
nuclei or "elementary" particle;). 

All the investigations are c aTied out in the 
center of mass system; hence, the indices of the 
total impulse and the diagonality with respect to 
them are not shown expressly. 

The elements of the S-matrixhave the form: 

where the symbols' are as follows: i A• i() are the 

particle spins, s and s 'are the total orbital 
angular momenta of the two particles relative to 
the center of mass before and after the reaction, 
respectively, a. and a.' are the remaining variables 
whi"ch arenot specified here (for example, vari
ables connected with the internal state of the 
particles). Equation (l) is an expression of the 
conservation laws. · 

Since the magnitudes expressly shown above 
are not directly measured, but instead the direc
tions of motion and the projections of the spins 
are measured, we must obtain the elements of an 
S.matrix corresponding to experiment from the 
elements of (l). In order to do this we must first 
of all go from the sT !M representation to the 
s'v 'l' 11' representation (the corresponding unitary 
transformation is the matrix of the Clebsch-Gordan 
coefficients C l }I 'l, , ), and then with the help 

s v 11 
of the transformation 

go from the l'11's'v'representation to the iJACf>AAn 

representation ( t? A Cf>A are the spherical angles of 
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the vector impulse of the particle A in the chosen 
system). The right side of (l) is transformed 
analogously. 

The initial and final states in the problems under 
consideration must be assigned not to wave func
tions but to density matrices 6 (f<r example, an 
unpolarized beam of particles must be assigned to 
the density matrix 8mm ,), The density matrices 

of the initial and final states are connected by 
means of the S-matrix 

(2) 

The average value of the opa'aor A', which oper
ates on the spin variables, in the form of a density 
matrix (m 1 lplm 2 ) as just described, is given by 
the formula 

A=SppA= ~ (m1IPim2)(m21Ajm1) .. (3) 
m1m2 

If we use the Wigner-Eckart theorem 7, Eq. (3) 
transforms to 

(-1)q 
A 4" =('II A II') Tq 

I I Y2q + 1 .x• (4) 

where 

(5) 

= V2i + 1 ~ (-1)-i+m, cr-_m,; im, <m11 PI m.). 
m1m2 

so that in order to find A~ directly, the magnitude 
of T ~rather than the density matrix is needed. 

The assignment of magnitudes T~ completely 
determines the density matrix, md conversely. 
Equation (5) may be considered as the transforma
tion of the density matrix from the m 1 .;n 2 repre-

sentation to the q, x. representation. 
We call the magnitudes T~ the tensor momenta 

(compare Refs. l and 3 ). ··· 
In this new representation the corresponding 

transformation of the spin operator matrices takes 
the form 

(6) 

X ~ (-1)i+m cf~m,; im, (m2l A I m1). 
m1m2 

Using Eq. (2) and carrying out the corresponding 
· . f . b . f TQa Qb Th umtary trans ormatwn, we o tam rom x. x. • e 

q q a b 

magnitudes of T A e are determined in terms of 
. ".\. "e 

f(2i A+ 1) (2i6 + 1)]'/' 

the matrix elements (l), the Clebsch-Gordan coef
ficients and the spherical harmonics, a somewhat 

cumbersome expression for T qA q e . 
xAxe 

After simplifications, the final formula takes 
the form: 

X 2} [(2qA + 1) (2q6 + 1) (2s~ + 1) (2s; + 1)1'1• 

where 

).,2 

r~: F -f [(2iA + 1) (2i6 + 1)]'1• 

[(2ia + 1) (2ib + 1)]-'f,~ (-1)q'+Hx'+x X 

X [(2s1 + 1) (2s2 + 1) (2s~ + 1) (2s~ + 1)l'I•G", 

X (J1 l~s~; Jq; 12 l~s~) 

(7) 

X a: (Jlllsl; Jq; J212s2) (iAies~ l~ot I R1 ' (E) I ia ibsllla.) 

X (i A i6s~ l~a.'l R1• (E) I ia lbs2l2a.) D~><' ( (jl A> .& A• 0) T~; 

~ [(2qa + 1) (2qb + 1) (2s1 + 1) (2s2 + 1)]'1. (8) 
qaqb 

(9) 

The summation I in Eq. (8) is to be taken over 

I 112 : l{ z;z 1Z2s 1s 2! q and over x. 

The coefficients G w X are detll'1llined in Refs. 
3 and 8. D~x.'( 'J1\, iJ A• 0) is the matrix element 

corresponding to the irreducible representation of 
the group of rotations of weight ]. 
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The camection of our tensor momenta with the 
density matrix is different from the connection 
between the density matrix and the tensor momenta 
which were derived by Simon (see the corrections 
to Refs. 2 and 3 ), but when normalized they are 
the same. In the particular case when q() = 0 and 
qb = 0 our expression yields a formula which 

differs from Eq. (3.2) of Ref. 3 by several factors. 
The distinction basically depends on the difference 
in the definition of the tensor momenta. This dis
tinction does not affect the final results, as 
compared with experiment, since a change in the 
definition of the tensor momenta must be accomp
anied b-y a corresponding change in the derived 
matrix element. 

An essential factor which is needed under the 
summation sign I, as compared with Eq. (3.2) of 
Ref. 3, is (- l )x. 

In conclusion, we express our gratitude to Prof. 
M. A. Markov for his constant inta-est in the work. 
We also thank L. G. Zastavenko for his advice on 
a numrer of questions concerning the theory of 
representations of rotation groups. 

* As has been pointed otlt in Ref. 5, spherical 

harmonics must be preceded by il, otherwise the result 
of the action of the inverse time operator will not be 
invariant with respect to complex m.gular momenta. 
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I N a previous communication 1 an effective cross 
section was calculated for the scattering of fast 

neutrons by a "black" nucleus having the form 
of an ellipse of rotation and a zero spin (even
even nucleus). In the present note these calcula
tions are generalized to nuclei with spins differ
ent from zero (odd nuclei). In the adiabatic 
approximation the effective cross section is de
termined by the matrix element 

fn'n (!1) = ~ dw<p~, (w) f(w, !1) tpn (w). (l) 

The amplitude for the scattering of a neutron by a 
stationary nucleus is: 

. (kb) 2 11 (t) 
f(w, !1) = t -k- ~(IL)-t-; (2) 

t = kb6 [1;2 ((.L) cos2 (ct>- tp) + sin2 (ct>- <p)]'/,, 

where ~(p.) = [ z 2 + ( l + z 2 ) p.2 ]Y., z =a/b. The 
quantity b is the radius of the largest circular 
cross section of the ellipsoid and 2a is the length 
of the axis of symmetry. The spherical angles tJ 
and cp specify the direction of the axis of symmetry 
wand the angles (), cfl, the direction of scattering n. 
The polar axis of the external coordinate system is 
chosen to lie in the direction of the incident beam. 
We shall assume a strong coupling between the 
motion of the nucleons in the nucleus and the 
motion of the nuclear surface2. In this case the 
wave functions for the rotational states of the 
nucleus <j!n ( w) can be represented by the proper 
functions of the symmetric top*, 

(3) 

where I is the total nuclear moment, M and K are 
the projections onto the external axis and axis of 
nuclear symmetry, repsectively, and w =( cp1• 0, cp2) 

represents the Eulerian angles which describe the 
orientation of the nucleus relative to the external 
coordinate system. The rotational states of the 
nucleus are given by 


