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The interaction of the translational motion of a polaron with the lattice vibrations and 
the associated energy loss of the polaron are investigated;. Using a classical treatment, the 
energy trmsferred from one polaron to the vibrational degrees of greedom of the latt,ice is 
calculated, This type of excitation is possible for acoustic vibrations only if the polaron 
velocity exceeds the sound velocity in the crystal. It is thus analogous to the Cerenkov 
effect for an electron moving with a speed greater than that of light. The numerical results 
obtained for NaCl, KCl and KBr show that, although this mechmanim is not the main cause 
for slowing, nevertheless the interaction of the current carriers with the acoustical and 
transverse optical vibrations is by no means small for these crystals. 

1. INTRODUCTION 

T HE theory of polaron mobility developed by 
Pekar on the basis of a macroscopic treatment 

of crystals 1•2 started from the picture of the 
scattering of polaron waves by the longitudinal 
optical vibrations of the lattice. The polarization 
of the crystal was split into two parts: a self-

-> .... 
consistent part P0 ( r- ,;) = ( C/ 417) D( r- .; )[where 

D( r) is the average induction of the polaron, C 
= ( l/n 2)- 1/ €, € and n are the dielectric constant .... 
and the index of refraction, .; is the radius vector 
to the center of the polarization source] and a 

variable part P' =}; PK_ei K'r describing the phonons. 
K 

On the assumption that the radius of the polaron 
state is large compared to the lattice constant, 
one can neglect the interaction of the polaron 
with short wavelength longitudinal optical vibra
tions as well as with the acoustic and transverse 
optical vibrations, which in this approximation 
have no longitudinal component of the dipole 
moment. Actually, for mmy materials (e.g., all 
alkali~ halide crystals), the radius of the polaron · 
state is only slightly greaer than the lattice con
stant. It is therefore of interest to evaluate the 
magnitude of the interaction of a moving polaron 
with the acoustical and transverse vibrations of 
the crystal. 

We shall limit our treatmentto polarons whose 
radius is large enough for the results of Pekar's 
theory to be applicable as a zeroth approximation, 
and shall calculate the next approximation in 
which the energy of interaction of the electron 
with the transverse optical and acoustical vibra
tions can still be treated as a small quantity. 

As in Pekar's first papers 3 •4, we shall treat the 
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electron motion quantum-mechanically and the 
oscillations of the ions classically. The con
stants characterizing the electron interaction with 
the crystal vibrations are taken from the data of 
one of the authors 5 •6 • 

2.FORCED VIBRATIONS OF A CRYSTAL UNDER THE 
ACTION OF THE FIELD OF A MOVING POLARON 

According to Pekar, the wave f~nction of a 
moving polaron is 

where v is the translationa. velocity of the polaron, 
and r/; 0 (r) is the wave function for the polaron at 
rest. The wave function can be chosen to be 
Gaussian, 

(1) 

with an error of less than 1% compared to the 
function used by Pekar 1• We denote the averag~ 
electrical induction produced by the charge 
density p = e I r/; 0 1 2 by 

D ( ) - - V' - - V \ e I <J!o (r') 12 d-r' (2) 
r - :P - ) I r - r' I ' 

and the "instantaneous" induction produced by 
an electron at the point r' by 

D(r, r')=e(r-r')/ 1 r-r'J3 • (2') 

For a lattice madeup of deformable ions, the 
ion displacements u~ and the associated dipole 

moments p1 = e o 1 (s numbers the ions and l the s s s 

cells of the lattice) are determined by the average 
field D( r ); according to the adiabatic approximation, 
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the dipole moments P~ of the electronic shells are 
detennined 2 both by the momentary position of the 
electron [and consequently, by the field D ( r , r ') l 
and the field resulting from the displacements u~. 
The equations describing the displacements and 
deformation of the ions can be written in the form 7 

0 ==-(avo I aP!x) + Dx (r!, r'), (3b) 

where U0 is the potential energy of the crystal ex
pressed as a function of p1 and P 1 • This function s s 

was given in Ref. 7 (with some differences in 
notation) as 

0 1 ~ ( l-l' l l' 
U = 2aa LJ ass'.¥yPsxPs'y (4) 

l l' l I' l-l' l pl') + 2bs-;;.¥yPs'.~Ps'y + Css'xyP~x s'y ' 

where the coefficients a, b, c depend only on the 
coordinate differences rl -rl:and are dimension

s s 

less constants; the summation extends over all 
indices. 

Since we are interested only Ln the vibrations 
of the ions, and not in the part P 1 of the polariza
tion which follows the electron m~tion without 
any lag, we can choose as the zero of energy of 
interaction of the electron with the crystal the 
state where p1 = 0 and the electron is at the s 
bottom of the conduction band. In such ~motion 
the inertialess part of the polarization, P~, re
mains the same as the case we are considering, 
where p~ =I= 0. Then F,q. (3b) becomes . 

(5) 

" To eliminate the quantities P~. we subtract F:q. 
(5) from F q. ( 3b) and get 

0 ( l l v ') .::~pl 0 = - au Ps. p s - p s I u sx· (I)) 

""' " Thus the <pantities P~ = P~ - P~ are determined 

only by the ion displacements u~ and do not de
pend on the instantaneous position of the electron. 
Consequently, they are equal to their quantum
mechanical average values, calculated with 
\ t/J(r') \2• Averaging E;qs. (3) over r', we get 

( 2) .. l msl es Psx = (7a) 

(a l -z)) l ' l) - U0 (Ps, Ps I aPsx + Dx (rs ; 

o ==-(avo (p!, i>!) I aP!x) + Dx (r!), (7b) 

- tV ~ 
where P 1 = P 1 + P 1 • s s s 

The potential energy of the electron interaction 
with the polarized crystals (measured from the 
bottom of the conduction band) will obviously be 

z , ~ ( 1 ,\J 1 -c· U (r) =- ~D rs, r J'\Ps + P.), 
sl 

(8) 

""' 
and since p~ + P~ does not depend on the instan-

taneous position of the electron, the quantum
mechanical average of UO is 

u l - '\.~ ( l ( l p-l) - - ~ D r s , r ') · . Ps + s = 
sl 

(9) 

- ~ D (r!).(p! + P!- P!). 
s, l 

The quantities P1 are found by averal!;ing Fq. 
(5): s . 

0 =- [avo (o, P!) I aP!.¥] + Dx (r!). (10) 

We transform Eqs. (7) to normal coordinates by the 
substitutions 

P!x = ~ P;.~ (K) exp {iKr!} qaK (t); (11) 
K," 

P!x = ~ [~ P;.¥ (K) qaK (t) + Rsx (K, t)]eil(,r!, 
K a 

where r;x' P;x are the normalized amplitudes of 

the free oscillations of the lattice, and satisfy 
the equations: 

·ftsP~xQ!K = ~ (Ass'xyP~'y + Bss'.ryP;,y); 
s'y (12) 

0= ~ (B~s'y.rP;'y + Css'xyP;,y), ( 13) 
s'y 

where 

A '\:1 l-l' . l l' ss'.q = Li ass'.xy exp {-- zK (rs- rs')} 
l' 

etc. ( cf. Ref. 7), 

:.1 = m1m2/(m1 + m2); 

.Q2 ( 3/ 2) 2 . aK = p.a 8 WaK> 
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the wocK are the eigenfrequencies. Then (3) be
comes 

r.J.as •• 2 ( ) 
-' -. q~K + Q,_Kq"K 14 e 

= a3 ~ P~.; { 1~; ~ Dx (r!) 
s.< l 

X exp {- iK:r!}- ~ Bss•.,yRs•y}; 
s'y 

(15) 

where N is the number of cells in the fundanental 
domain of the crystal. 

It is easy to see from a comparison of Eqs. (15) 
and (10) that the quantities R , are precisely v s y . 

the Fourier componmts of P~ .. Solving Eq. (15) 
for the R , and substitutina in (14), we get 

s y " 

(16) 

e2 " "• { .K: l} = N tJ. ..:::.J p sx ex p - 1 ·r s 

l 
X [Dx (rs) 

s,.t: 

- ~ Bss•xyC;I•yzDz(r!,)exp {iK•(rs-rs")}]. 
s's"yz 

3.TRANSFER OF ENERGY FROM A MOVING POLARON 
TO THE CRYSTAL 

In order to determine the time dependence of 
the generalized force Q"'(K, t), we calc2ulate the 
Fourier components of p = e/t/J(r-vt) I for an 
arbitrary point r: 

(17) 

=-exp ---zK·vt P { K2 . } 
V 8cx2 ' 

where Vis the volume of the fundamental domain. 
The Fourier transforms of the Poisson eq:~ation 

~ cp= -417 p and the relation D = -\1 cp are 

D (r, t) = ~ D (K, t) eiK-r, (18) 

D (K t) 4rr:ie K { K2 . K t} , =-~exp - Scx2 -t •v . 

Substituting(l7) in (15) and noting that Iei(K-K')r~ 
. - l 

=I= 0 only if K- K '= 211 cf' (where qm is an arbi
trary vector of the reciprocal lattice), we obtain 
a complicated expression for Qoc ,consisting of a 
sum of terms with different frequencies v·(K+211qm). 
Ffowever, in the macros::opic approximation where 
we consider polarons of large radius, only terms 
with wave vectors smal compared to the vectors 
of the reciprocal lattice appear in the expansion 
of D ( r ). Therefore, since we are neglecting the 
components D( 211 qm) "-- exp !-( 211 qm) 2/8 CJ. 2 !, 
it would be inconsistent to keep them in the ex
pression for the externa force. Thus, in the 
sum over min the expression for Q"', we should 
keep only the leading term with m = 0. Using (13) 
and ( 15), we can transform Q) K, t) to the simpler 
form 

(19) 

Q" (K) = ~ D (K, t) ~ (p~· t P;•). 
tJ· ..:::.J 

s 

The solution of Fq. ( 16) can be put in the form 

Q"-(K) 
q"K = . {cos Kv t- cosw"K t 

w~K- (K·v) 2 

(20) 

where bocK and {3"'k are arbitrary integration con

stants. If the crystal was not deformed at t =0, 
then all the {3 "'K = 0. 

From Eqs. (7a) and (7b), the work done on the 
crystal by the moving polaron during the time 
from 0 to t is 

(21) 
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Taking Fourier transfonns and using the relation · 

C-1 c-1· 
ss'xy = s'syx, 

we get, after simple transfonnations 

t 

A=~ (S Q~K (t) q~K (-K) 
o Kot 

(22) 

(23) 

+ S D.~(-K) C~~-'yDy(~)} Np.je2 dt. 
ss'xyK 

The second term in the integral isidentically zero, 
since the expression to be summed over K is an 
odd function of K. Integrating the first tenn in 
(23) with respect to t a~d dropping tenns which 
go to zero or cancel one ~other when. we sum 
over K, we find for sufficient! y long times t 

(24) 

A= 2v[!._"" 1 Q"' (K) I~ w"'K sin21 / 2 (w"K- K-v) t 

e· .LJ w"K + Kv (w~K- Kv)~ 
"•K 

As t -> oo, A becomes proportional to t, and thus 
the special choice of solution with q .. K ( t = 0) = 0, 

where A also includes the energy of fonnation of 
the polaron, has no significance. 

4. COMPUTATION OF ENERGY LOSS OF A POLARON 
FOR SPECIFIC CRYSTALS 

Further calculations in general form are not 
possible, so we shall limit ourselves to consider
ing the simplest case of the motion of a polaron 
ofrelatively large radius in a cubic crystal. 
Numerical results will be obtained for crystals of 
NaCl, KCl and KBr. 

We may as~ume tha, for a polaron of large 
radius, QJK) is significantly different from zero 
only for K' s which are so small that the wocK can 

be assumed to be equal to their limiting fre
quency in the case of optical waves, and propor
tional to \ K l in the case of acoustic waves. 

For the optical branches w1K "'wl\ (longitudinal 

waves), and w 2K = w 3 K = w.L( transverse waves), 

where (L)II/ (L)..L = v"7/n. Taking the z-axis along 

the direction of the velocity v and changing to 
polar coordinates, we can carry out the summa
tion over the angle <7. Replacing the sum over K 
by an integral, we have 

where cos iloc = woc/Kv, 1,2, 3. 

For the acoustic branches, we can set wocK 

=KC.)O, cp). Then the integration over the angle 
(}gives the same formula (25), where (}:.Cis the 
"resonance" value of the angle 1?, for which 

(26) 

In a paper of one of the authors, solutions of the 
equations for the normal modes ( 12) were obtained 
inc~uding terms of order k 2 = ( aK )2 , (where a is 
the separation of neighboring ions); numerical 
values of the amplitudes were found for the four 

. . 5 
crystals: LIF, NaCl, KCl md K~r • 

For the lon~tudinal optical vibrations, the 
effect is already different from zero in the zeroth 
approximation with respect to k where, according to 
Ref. 5, 

(27) 

where the quantities fls and c 8 /a 0 are numerical 

constants whose values for the crystals mentioned 
are given in Table I. Substituting (27) and (18) in 
( 19) and ( 19) in (25) and integrating ·over ~ we get 

e-.~ (28) 
-dx. 

X 

For low velocities v, when w 11 /2cx.v· » 1 and the 
asymptotic expansion of the exponential integral 
is applicable, we get for the approximate de
pendence of A/ton v 

~1 = Bvexp {-(wuf2ccv)2} 
(29) 

[ ( 201:V )2 (201:V )4 ] X 1 - w-u + 21 wg - .. · , 

. (30) B = "e4. 201:2 (t + cl + c2 )2. 
(J.a3w1 ao 

Thus the energy loss is greater, the greater ex., i.e., 
the smaller the radius of the polaron ~tate, and · 
increases exponentially with increasing velocity. 

For the crystals NaCl, KCl and KRr, for which 
the parameter ex. in the polaron wave function is 
known, the result of coi~JPutation with the exact 
formula (26) is given in Fig. l. 

For transverse optical vibrations the sum of Ps 
+ p8 , which is parallel to the vector k, is given 
by the formula 
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TABLE I. Amplitudes of Dipole Moments of Optical Vibrations 

Crystal 

NaCl 0.6066 0.3934 
KCl 0,4756 0.5244 
KBr 0.6715 0,3285 

2 

~ (Ps + Ps)k = bkjk't±(k). 
s=l 

(31) 

The value of the constant b depends on the 
properties of the crystal (values calculated from 
Ref. 5 are given in the last column of Table 1), 
while 1/ T±( k) is a universal function and depends 
only on the direction of the vector k. Its expansion 
in spherical harmonics was found in Ref. 5. Ap
proximately, 

(32) 

where T 0 , Ttetc. are numerical factors and the 
q -

+and -refer to the two branches of the transverse 
optical vibrations. Because of the complicated de
pendence of T±on /J and cp, the energy loss of the 
polaron will be strongly dependent on the direction 
of the velocity v with respect to the crystal axes 
( () and cp in formula (32) are the angles describing 
the vector k in a polar coordinate system fixed in 
the crystal). However, for a rough estimate of the 
energy loss, we can limit ourselves to the first 
term in (32). We then get 

(33) 

)(exp {- (w.L/2cxv)2 } [ 1 + ( 2:~JJ, 

where T~ = 0.1481; T~ = 0.0408. Comparing (33) 
and (29), we see that for low velocities, where 
cu!./2 o. v >> 1, A2 , 3 differs from A 1 by the factor 

( 2w )2 {w2 w2 } (cxa)4 --11 exp 11 - .l 
a.v (2ocv)2 

b 

-0.01485 -0.51755 0.084295-
-0.05516 -0.43228 -0.042374 
-0.04367 -0.48942 0,107363 

which comes from the <pantity ( b T~) 2 • 
Thus as the velocity decreases, the importance 

of the transverse vibrations in the slowing down 
increases. Figure 2 shows the behavior of A2 ,/t 
for the same three crystals. 

We find the quantities Q,J K, t ), o. = 4, 5, 6 for 
the acoustic vibrations from forumla (9),_ using the 
results of H ef. 5. In the zeroth approximation for 

k, p~ = -p;, P~ = P; = 0 for the acoustic vibrations. 

In second order ink, using formula (67') of Ref. 5, 
2 

the sum I (p; + P;) · k/k gives 
s=l 

[no + n<4> Y 4 (6, cp) + n<6> Y 6 (6, cp) (34) 

+ n<s> Y 8 (6, cp) + n<1o> Y 10 (6, ~)] k2 ; 

the values of n<o>, n< 4 >, etc., are given in Table V 
of I.lef. 5. Then 

4 . 8 8k 
Q 'K t) - - 1t £e a e-k'/B(«a)' 
"' , - [.LV (35) 

X{n° + n<4> Y 4 + ... }. 

When substituting Ooc in formula (2S) we must set 
the angle between k and v equal to the reS>nance 
value ,'}'"' given by (26). 

From F:q. (6) of Ref. 5, the sound velocity in 
the crystal is 

Cil ... /""i2 
C = fRI = V alL vo {1 + v< 4> Y 4 (0, cp) (36) 

+ v<6) Y 6 (0, cp) + ... }. 
The solution of Eq. (~)for()·"' is generally im

possible for such a complicated dependence of C 
on the direction of k, so we shall replace the 
curly bracket by unity. From Table IV of Ref. 5 
we see that all the v(i) (i = 4, 6, ... , 10) are small 
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A/t, erg/sec 

~~, 
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10 
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m6Ljr---~~ ~J-L-~~----~~~~~ 
tl z .1Q56810 Z J II J 5 

v, em/sec 

FIG. 1. Energy transferred from a polaron to the longi
tudinal optical vibrations of the lattice as a function of 
itsvelocityv: 1-"'aCl, 2-KCl, 3-KBr. Thedotted 
lines shown the energy transferred to the lattice per 
second for various values of the mobility u, expressed 

in cm 2/volt sec and calculated according to the formula 

IT'= eEv = e!! 2/u, 

compared to one, !D the resultant error is small. 
Withfhissimplification, Qoc no lon~er depends on 

the direction of k, md integration of (25) gives 

(37) 

~ = 4, 5, 6. 

Formula (37} is of course applicable only if v;~C, 
since otherwise, Eq. (26) cannot be satisfied. In 
Table II the values of the constants in Eq. (37) are 
given for the various crystals and the various 
branches of acoustical vibrations. From a 
comparison of formulas (37), (33) and (29) it is 
clear that for low velocities, so long as v?_ C, 
most of the energy loss occurs via excitation of 
acoustical vibrations (except fo 1\JaCl ). The 
numerical values of the en~rgy trmsfer are small 
for v "- C but of the same order of magnitude for 
all six branches. Thus we may expect that a 
quantum-mechanical calculation of the scattering 
will show an important contribution from interac
tion with the acoustical and transverse optical. 
vibrations. 

To estimate the role of the mechanism of energy 
loss which we are considering, we compare the 
quantity A/t with the power W from the external 
force eE which maintains the translational motion 
of the polaron at the fixed velocity v = uE. where 
u is th~ mobility of the polaron and W = e E·v 
= ev 2/u. For a mobility u "- l-10 cm 2/volt sec, 
which is typical of alkali halide crystals, the 
line ev 2/u is above the curves of Aoc/t. Only for 
polaron velocities v > 5 x 10 5 em/sec does the 
ener~y loss to excitation of longitudinal optical 
vibrations become greater than W. This means that 
for such velocities the mobility of the polaron 
must decrease. 

In con elusion, we note that the transfer of 
energy from a moving polaron to a crystal was cal
culated by Buckingham 8 on the basis of band 
theory, where the interaction of the electron with 
the vibrations was taken to be 

~cpdivud't (38) 

where u is the displacement vector, and the crystal 
was treated macroscopically and the electron was 
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TABLE II. Constants of Formula (37) which Gives the Energy Transfer 
from the Polaron to the Acoustical Vibrations of the Lattice 

Branch 
c~=v•Ve'Jp-a 

Amax A~u 
No. -~-=~e Crystal 

~ 

in 105 em/sec 
-11~. 101 

in 10"2 erg/sec 

NaCl 

KCl 

KBr 

2 JI/56/JfU 

4 
5 
6 

4 
5 
6 

4 
5 
6 

2 J 'I 5 
v, em/sec 

2 .. 53 
2.79 
4.65 

2.01 
2.5 
4.1 

1.6 
2.1 
3.3 

FIG. 2, Energy transferred from a polaron to the trans
verse optical vibrations of the lattice. The notation is 
the same as in Fig. I. The upper curves show A 2/t, 
the lower curves A31t. 

0,694 0,277 
2.177 2.67 
1.003 0.276 

1.061 0.120 
3.031 Q.839 
12.48 8.36 

1.176 0.0791 
3.155 0.433 
6.002 0.996 

treated as a point: p = eo (r- v t ), c is a constant 
which cannot be calculated from the band theory. 
Such a calculation cannot possibly be correct, 
since a point electron obviously interacts not 
only with the longitudinal acoustic waves as given 
by formula (36), but with all other vibrations. Then 
the magnitude of the interaction turns out to be 
of the same order for both long and short wave 
vibrations. But the expression (38) is obviously 
not suitable for short wave oscillations. In addi
tion, for v-+ C Buckingham's result diverges like 
1/( v- C) (because the electron is tre at~d as a 
point). As we see, all these difficulties are 
absent from the polaron theory. 
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