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An infinite system of coupled equations is constructed, of which each describes a

process involving the emission and absorption of a certain number of particles.

This

system is shown to be equivalent to the Tomonaga-Schwinger equation. The solution,
which is derived by a process of successive substitutions, leadsto results for the
S-matrix which generalize the.results ofthe theory ofradiation damping.

IT has often been pointed out that the solution
ofthe problems ofthe quantum theory of fields
by means of perturbation theory leads to difficulties
in a number of cases. In order to eliminate these
difficulties, and to study the limits of applicability
of the results obtained by means of perturbation
theory, one hasto develop a more consistent
method of solving the equations of field theory.
The present paper represents an attempt to develop
amethod of solution which guarantees thatthe
normalization remains correct, and f rom which one
obtains as an approximation the results of damping
theory, and, as a zero-order approximation, per-
turbation theory.

We start fromthe usual e quation for the scattering
matrix:

ihedU [a] /8o (x) = T (x) U [5], o

where X (x) as usual, is the operator of the inter-
action Hamiltonian, which, if we limit the discus-
sion to the case ofthe electron-positron and the
electromagnetic fields (we consider these fields
for definiteness, althoughtheresult can be general-
ized directly) takes the form

() = —iA, ©

== P@ 7Y (0 — @) 1,14, (v).
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The operators ¢, ¥, A saisfy the equations
of free fields and therefore, if we write

P(x) =u(x) +o(x); bx) =u(x)+0(x);3)

A, (x) = AL (0) + AL (%),

we may interpret 4", 7 and v as free-particle
creation operators creatmg photons, electrons
and positrons, respectively) and 4{"), u and
as absorption operators forthe same free particles.
This basic equation is quite general, i.e., it
describes any arbitrary process involving the
creation and annihilation of particles in arbitrary
states due totheir mutual interaction. Moreover,
as has already been pointed out, ! Eq. (1) does
not describe each ofthese processes separately,
but containsthem all simultaneously. In the proc-
ess of solving the equation by perturbation theory,
this connection between different processes is lost
sight of in practice, and each is considered in
isolation. We shall try to put forward a method of
solution which is free from this disadavantage,
and which uses this connection between different
processes as a starting-point. :
The physical picture behind this change isthe
following: As a result of the interactions between
the partlcles the probability of the initial state

decreases in the course of time, while simulta-
neously the probabilities of the mutually com-
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peting transitions into new states are building up;
the transitions themselves look like the absorption
of free particles with certain energies and momenta,
and the creation of particles with others.

Our task is to construct a solution which corre-
sponds to this physical picture. One of the simplest
ways to this end is to put -

7 (4
U= 2U",
=0

where (&) stands as a symbol for the set d
suffixes ( i,j; n,m; p,0). The operator U ()
which we have introduced represents the transi-
tion matrix for atransition in which i photons,
n electrons and p positrons present in the
initial state are absorbed, and j photons, m elec-
trons, and o positrons emitted (the emitted particles
belong to thefinal state). In this way we clearly
take into account the factthat the general scattering
matrix consists of a sum of the operators of all
particular types of transition.

However, the mere ‘‘splitting’’ of the transition
matrix U into a sum of partial transition matrices
U € is not enough. One has to find a set of
equations which connect all the U (€) and solve
these with some or other degree of accuracy. We
Have previously given such equations! for a
simplified problem. The method used here of
“splitting” the equations can be extended to the
general case. The essence ofthe method isto
replace the basic equation (10), which, with the
use of (4), may be written in the form

S i)
S%IJ : e (5)

W;”’"—g‘[( (X)

(4)

ihc

+ 0 (1) 7, (1 (%) + 0 (1) — (2 (1) + 0 (1) (1 (%)

+o ()1, (A () + 47 )2 U ),

by a system of equations which (a) when added
together replace (5), (b) when taken separately,
would each describe a process withthe emission
and absorption of a given number of particles, as
distinct from (5) which contains the whole set of
possible processes. The fact that an equation
describes a process with a fixed number of emitted
and absorbed particles means that each term in the
equation must describe the emission and absorp-
tion of the same number of particles.

In “splitting’’ Eq. (5) one must note the§ U

contains i photon absorption operafors A('_ ;
and j photon creation operators 4 Similerly,

it contains n operators u, m operators u,
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p operators v and 0 operators 7. The system of
equations obtained after this “splitting’’ may
be written schematically in the form

ihedU® [30 = X HZ\U®, (6)

where H(g))

is an interaction operator which

-represents one of the sixteen terms in H(x), and

where the labels in £’ may differ from the corre-
sponding labels in £on the left-hand side at
most be one each ( some of the numbers n, n”
m,m’; p,p’; 0, c’may also be the same). One
may show without difficulty that the system of
equations (6) is consistent, but we shall not give
the proof here.

We shall not write out the right-hand side of
Eq (6) explicitly, because of its unwieldy form
(it contains 128 terms) but we shall only discuss
the method of construction of these terms, and
consider a number of typical examples.

The values whichthe labels {’may take in a
term on the right-hand side of (6) depend on which
of the operators A ACD 5w B, v occur in
that term. For terms containing 4%, i"=i—1;
j'=j,ori’=i, j’=j+1. Inthe terms with
A =g, j’=j-l,ori’=i +1;j’=j. In quite a
similar way one can express the labels n’, m”
and p’c’ intems of n, m, p and o according to
which operators ofthe electron-positron field occur
inthe term under discussion. The only difference
is that each term contains two electron-positron
field operators, which may be grouped in pairs:
uand &, v and ¥; u and v, and @ and T , whereas -
the electromagnetic field operator occurs only
once. This difference reflects the inportant fact
that photons are absorbed and emitted singly,
whereas the creation and annihilation of the par-
ticles ofthe electron-positron field can occur
only in pairs ( electron and positron). This causes
no essential complication in the determination of
the labels n”, m %, p”and o but in writing them
down one hasto remember the effect of the various
spinor operators.

(Consider a few terms as examples:

1) - _ iy il .
uT_uA:(L Wy i=iiin 1.mf1,p.o)'

This term describes the absorption of a photon,

and the absorption of an electron in one state, and
its emission in another; the total number of

spinor particles therefore remainsthe same, and the
process looks likethe transition of an electron
from one state to another with the absorption of

a photon.

2 - PR .
) u“f}LA,(:HuU“'l ].n.m,p.c).
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This term corresponds to the emission of a photon
in the transition of an electron from one state to
another. However, in distinction from the case
considered above, the last transition is connected
withthe absorption ( and emission) of an electron
which was previously emitted (absorbed), and
not withthe absorption or emission of ““new’”
electrons.

3) EYQ,A.(L_)EU“'H]; fem—1; 0 0-1)
This term correspondsto the absorption of a
previously emitted photon and the simultane ous
creation of an electron-positron pair.

4) U‘,’uAfj—)uU (i+1, j; ny m41; footi)

This term corresponds to the emission of a photon
which was previously absorbed, and the absorption
of a previously emitted electron-positron pair.
5) ()77 (i =15 ny m; e—1, 6—1)
vy, A, oU .

This term correspondstothetransition of a positron
from one state to another with the emission of a
photon.

These examples will suffice to showthat all kinds
of possible processes find their expression in the
equations (6).

The unwieldy form ofthe equations (6) is no
unsurmountable obstacle for their analysis. In a
number of cases a kind of ‘‘operator dimension
rule’’ proves convenient: all terms in the equation
must contain A1), A('), u, u, v, v to similar de-
grees; it should, however, be remembered that
certain bilinear combinations of creation and anni-
hilation operators of certain fields have “zero”
dimension ( if the operators relate to the same
particles) in other words they are c-numbers.

It is easy to see that the sum of all the equations
(6) gives the original Eq (5) , as it should do.
Indeed, the sum of the left-hand sides of (6)
gives '

2 N LIOAR

ihe ? 5 )

- [}] U® | = ine -

= [he

The sum of the right-hand sides is

DXHEUD = QHUS = FU.

(8)

It is easy to see that the sum of (6) contains all
the terms which occur on the right-hand side of
(5) and that each term occurs only once.

One can also show that the original equation
(10) and the requirements (a) and (b) determine the
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system (6) uniquely. Indeed, if we add to the
various equations (6) further terms whose sum
vanishes, then requirement (a) would remain satis-
fied, but (b) would be violated. - And, similarly,
any addition to (6) which would satisfy (b), would
violate (a). Pence the transition from (1) to (6)
subject to the conditions (a) and (b) is unambi-
guous. ) l

~ We now turn to the problem of solving (6), i.e.,,
of finding U ). Consider first time-dependent
problems (stationary states will be discussed
‘later) i.e. we require a solution which satisfies the
initial condition ’

U®[e) =1, U® 5] =0, 9)

if (£) (i.e. at least one of the labels i, j; n, m;
p, o) differs from zero. - '

We look for the solution by the method of
substitution, which consists in inserting, on the
right-hand side of (A) for the operator U € jts
value

EN i /8N (€ 772"
U —_};(g) AHEVU.
T

The operator (8/80),"! which is the inverse of a
functional derivative, may in all the cases which
we shall meet here, be interpreted as an integral
over the four-dimensional region bounded by the
hypersurfaces 0, and 0.

As aresult of substituting (10) on the right-
hand side of (6) there occurs a U¢ ) with new
labels (£7). This we can in turn express in terms
of U®), etc. As a result of such successive
substitutions one obtains an equation of the type

sU® \ _\it+it2q
S Z (ﬂ)

€ (3\7! 8\ 7yt j42g—1) o)
[H‘é”(sc> (5&) H,(5i+f+zu> ]U
2!
—1
(‘ﬁ)

37 1 (Eep—p) £
[#8(s) () HeE " o+
Here we have divided the terms on the right-hand
side into three groups. The first consists of the
terms which contain U (°). Each of these contains
i, n, p annihilation and j, m, o creation operators
for photons, electrons and positrons, respectively.
In addition, these terms may contain q operators
A" and q operators4'~), whi ch form a combina-
tion (4P 41)) of “opgrator dimension zero”. *
*And a corresponding number of combinations of

““operator %im?n?io zero’’ of electron-photon field
operators (uu), (vv)since to every electromagnetic
field operator belong two operators of the electron-

positron field.

(10)

(1D



694

The second group of terms in (11) contains
U ) | where (&) is that label which occurs on the
left-hand side of the equation. The structure of
the terms of this second group differs from that of
the first group in that the numbers of photon
emission and absorption operators contained in
them are equal ( and equal to 7).

Finally, a third group of terms, which we l}ave
denoted by (, contain those operators U (¢
whose labels (£) are neither zero, nor equal to that
which stands on the left-hand side of (11). By
carrying the process of substitution far enough,
we may make the order ofthe terms ( as high as we
like, so that, at any rate in electrodynamics where
the coupling constant is small, Q may be neg-
lected.

In solving concrete problems, we shall restrict
the discussion to terms of a certain order, and
neglect Q. To neglect Q is similar to the device of
cutting off the chain of linked e quations in the Tamm
Dancoff method.2 Omitting Q, we are left with the
following equation to be solved:

3UP [5]/85 (%) (12) -
— \([)E) br(()) [3] + K;E) U(E.\! [3],
where
@ a (=T i 0
K" =Y (ﬁ) (B (13)

@ 3\t 3\ yGititee—1)] .
{H(El) (&_) .« oo <§E) H(Ei+f+2q) ’

@ (3Yy1 (8N (azz_n}
{H‘E’) (EE) - '<8a) Heyy f-
In line with what was said above, the operators

BUte i+0 ¢ ldenote the sum of all possible
permutations of A‘*) and A in operators of the

type
@ (3\7 8\t gy

containing i + q operators AW and j +gq
operators A™, in such a way that g pairs of
such operators refer to the same photon states
(and form bilinear combinations which are c-num-
bers).

Equation (12) by itself is not sufficient. For a
complete formulation of the problem, we must

V.I. GRIGORIEV

also write down an equation for U'®) [ o ] .
This equation could be derived by the method of
successive substitutions from the system (6);
however, we shall not derive it in that manner, but

obtain it directly from (12) by putting there
(& =(0):

3UO [0]
36 (x) (14)
o~ (i
=3 (%) B
I=1

—1 s\t Ear—1)
P (—8—6—) H(Egl) } U(O) [S]
= Koy o[s].

The final form of the equations to be investi-
gated is

U® 5] (152)

= (KU e1do + \KP U (5} do

[ 5

U 5] =1 +\ KU 5] do. - (15D)

Go

In forming the Eqgs. (15) we have made use ofthe
initial condition (9).

Our next task consists in considering the
Eq. (15).

It goes without saying that the method of suc-
cessive substitutions, with the omission of the
Q tems, which we used in obtaining (15) is not
the only way of solving the fundamental set (6).
Even considering only approximae solutions one
could have given other ways of approach, which
might be more convenient, for example, in the case
of strong coupling. However, we shall confine
our attention to the discussion of the Eqs. (15)
in view of their relative simplicity. Indeed, as
has already been stated, our initial set (6) is
most unwieldy. Although we have obtained our
Egs. (15) from (6), they can in practice also be
written down directly without reference to (6).

For this purpose we must only observe the rule
of “‘operator dimensions’’, according to which all
the terms in each equation must describe the
emission and absorption of the same number of
particles (not only of photons, but of each other
kind). One must then also allow forthe fact

that bilinear expressions of absorption and
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emission operators relating to the same particle
have ‘‘operator dimension’ zero.

From this ‘‘operator dimension” rule itis at
once evident, in particular, that U (f)may differ
from the correspondin% quantity obtained from
perturbation theory, Upfrz = Uéf ) only by a
c-number factor (i.e., a factor of “operator
dimension’’ zero). - Using this fact, and noting
also that

o] .

HE) _ g8

0 :\ o do,
N

(16)

we shall look for a solution of (15) in the form

Ue [5] = \‘K(gz) U =3 des, (17)

where ¢'¢is a certain unknown c-number
quantity which remains to be determined, and
U [ o] is found from Eq. (15b). It is
easy to see that the insertion in (12) of the value
of U'® [0 ] obtained from (15b) by iteration is
equivalent to an increase of g in the expression
for K 2)5 ),

We may therefore write down the following (£).
equation for the determination ofthe quantity €

a

~(2) (&) 3 AEV L g (B) zy 1
}\((,)SE=K(())+I\E)BKL(~,)€(‘)&(O. (8)

Go

We shall be interested only in the asymptotic
solution for 0 =®, oy = — © , and this makes
it possible to write the equation for ¢ (¢) in the
form

® +R§f’ Kgm S K(()E)3<s> deo / Réi’ (()E), (19)
where IZO (A) is the conjugate of Ko(f ),

We have written (19) in a form which makes it

obvious that ¢ (¢ ) iis a c-number, Indeed all
coefficients in (19) are operators in diagonal

form, and this proves our statement that &¢¢ )
is a c-number.

We see from the relation (17) that the result of
perturbation theorzr corresponds to the zero-order
approximation & (¢) =1 in the solution of (19).

If we represent £¢) in the form

o0
(E)pr(8) ¢ (2)
) ) 1\(() )K(l ) ‘ Ky do 20)
® @) — — *
e = —— - T(Z) - (E ’
(1— R®) KK
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we find the following expression for the S matrix:

(21)

(o)

® _ (7))  do
St = B Ko {—RE "

If we restrict the discussion to one-electron
problems, and neglect in the expression for

K ¢) allégr{ns with ¢ > 0, then the value
(21) for S reduces to that obtained earlier

from the generalized damping theory. Thus our
solution reduces, in appropriate limits, to damping
theory and to perturbation theory.

We do not need to investigate specially whether
the normalization is correct, sincethis is already
proved within the framework of damping theory.
Thus the solution which we have constructed satis-
fies the requirements set out in the beginning of
this paper. *

We see from (20) that the perturbation theorg
gives a satisfactory approximation when R (&30,
which is usually the case at low energies. Butif
R¢) is a preciable, then the result may differ
appreciablr;' from that of perturbation theory. It
has been shown in a number of examples that
&) may play the part of a cut-off factor, which
will reduce the general magnitude of the cross
sections at high energies. However, the appearance
of the general solution does not in general ex-
clude other possibilities. The detailed discussion
has to be carried out separately for each case.

We still have to refer to the elimination of
divergences. Sincethe whole theory has been
formulated in a manifestly covariant way, we may
use the same methods for eliminating the diver-
gences as in the usual theory. The results ob-
tained after removing the infinities, may, however,
differ from the results of perturbation theory. We
shall not examine the questions of self-energy and
charge, since they do not lie within the scope of
this paper.

The method explained above is applicable not
only to the case of the electron-positron and the
electromagnetic fields, but also to any arbitrary
combination of fields. As we increase the number
of interactions which are considered, we must add
to ( &) more labels; the total number of pairs of
labels in (£) equals the number of types of
elementary particles.

However, ourmethodis general notonlyinitsapplicabil-
ityto any typesof field. This method may{;e used alsoto
study various kinds of generali zed theory (those contain-
ing derivatives of higherorder, nonlinearinteractions, some

kind of nonlocal generalizations, etc.). We note incident-
ally that intheories with nonlinear interactions( /7 ~ n)3

the damping must play amuch more significantpart than

* Actually our solution corresponds to a partial
summation of a series of successive approximations
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with the usual linear interactions.

The method may al so be generalized to stationary
problems for which one cannot determine initial
conditions. In that case the problem reduces to a
set of homogeneous integral e quations which ma
be obtained from (12) by omitting the terms in U
In solving stationary problems one may use the
method of residues. Problems involving several
particles lead to equations of the Bethe-Salpeter

type.
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In the region of low energies the method pro-
posed above leads, as arule, to the same results
as perturbation theory (in corresponding approxi-
mations). At high energies, however, the correc-
tions may be appreciable, in particular as regards
the relative importance of various processes.
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A general investigation of the nonlinear wave motions of an electron plasma has been
carried out for arbitrary electron velocities. Temperature effects are not taken into account,
and the state of the plasma is characterized not by a distribution function, but by the particle
density. A correspondence is established between the wave motion of the plasma and the
motion of a nonrelativistic particle in a certain potential field. The variation of the fre-
quency of longitudinal vibrations on the velocity amplitude has been determined. Nonlinear
transverse vibrations of the plasma, and vibrations close to these, are also considered, and
their frequencies determiped. A number of relations are established for the complicated

longitudinal transverse plasma oscillations.

1. FUNDAMENTAL EQUATIONS
IN the study of the oscillatory behavior of an

electron plasma, i.e., of an electron gas neutral-
ized by ions, or a neutralized electron beam, it is
usually assumed that the electron velocities and
the density fluctuations are small, so that one may
use a linearized system of equations. This scheme
makes it possible to determine the frequencies of
oscillation and to discuss, by means of gas-kinetic
considerations, the part.played by temperature ef-

fects1,2, which turn out in general to be unimportant.

Nonlinear plasma oscillations were considered in
: 3 . .
a previous paper  jn which temperature effects
were neglected, and the electron velocity was as-
sumed to be finite, but essentially nonrelativistic.

Under these assumptions it is found that the oscil-
lation frequency is independent of the velocity
amplitude, and obeys the classical formula of Lang-
muir.

The purpose of the present paper is to investigate
the oscillatory motion of the plasma quite gener-
ally, for arbitrary velocities. But, asin Ref. 3, we
shall neglect temperature effects, i.e, we shall
assume the plasma temperature to be zero. This
approximation is very natural when we are investi-

- gating nonlinear oscillations even in a ‘‘ high-
temperature’’ plasma, and even more so in the study
of plasma oscillations in electron beams, where the
temperature is practically zero. ‘Under these condi-
tions it is not necessary to introduce a distribution
function to specify the state of the plasma, but one



