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An infinite system of coupled equations is constructed, of which each describes a 
process involving the emission and absorption of a certain number of particles. This 
system is shown to be equivalent to the Tomonaga-Schwinger equation. The solution, 
which is derived by a process of successive substitutions, leadsto results for the 
S-matrix which generalize the.results of the theory of radiation damping. 

I T has often been pointed out that the solution 
ofthe problems ofthe quantum theory of fields 

by means of perturbation theory leads to difficulties 
in a number of cases. In order to eliminate these 
difficulties, and to study the limits of applicability 
.of the results obtained by means of perturbation 
theory, one has to develop a more consistent 
method of solving the equations of field theory. 
The present paper represents an attempt to develop 
a method of solution which guarantees that the 
normalization remains correct, and from which one 
obtains as an approximation the results of damping 
theory, and, as a zero-order approximation, per
turbation theory. 

We start from the usual equation for the scattering 
matrix: 

incoU [cr] I ocr (x) = .'1t (x) u [cr], (l) 

where JJ (x) as usual, is the operator of the inter
action Hamiltonian, which, if we limit the discus
sion to the case ofthe electron-positron and the 
electromagnetic fields (we consider these fields 
for definiteness, althoughtheresult can be general
ized directly) takes the form 

.'1t (x) = - j,A~'- (2) 

=- 2e [~ (x) l 'f (x)- 'f (x) ~ (x) "( ] A (x). 
!J. '!J. jJ., 

The operators ;J, t{l, A11 saisfy the equations 
of free fields and therefore, if we write 

~ (x) = u (x) + v (x); tjJ (x) = u (x) + v (x);(3) 

we rn ay interpret A ( +) , u and v as free-particle 
creation operators r creating photons, electrons 
and positrons, respectively) and A~-), u and v 
as absorption operators forthe same free particles. 

This basic equation is quite general, i.e., it 
describes any arbitrary process involving the 
creation and annihilation of particles in arbitrary 
states due to their mutual interaction. Moreover, 
as has already been pointed out, 1 Eq. (l) does 
not describe each ofthese processes separately, 
but contains them all simultaneous! y. In the proc
ess of solving the equation by perturbation theory, 
this connection bet\\een different processes is lost 
sight of in practice, and each is considered in 
isolation. We shall try to put forward a method of 
solution which is free from this disadavantage, 
and which uses this connection between different 
processes as a starting-point. 

The physical picture behind this change is the 
following: As a result of the interactions between 
the particles the probability of the initial state 
decreases in the course oftirne, while simulta
neously the probabilities of the mutually corn-
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peting transitions into new states are building up; 
the transitions themselves look like the abso~ption 
of free particles with certain energies and momenta, 
and the creation of particles with others. 

Our task is to construct a solution which corre
sponds to this physical picture. One of the simplest 
wtys to this end is to put 

, .' _ "\' u<~l 
u- ..:;.J ' (4) 

;:"=0 
where (,;)stands as a symbol for the set d 
suffixes ( i,j; n,m; p,a). The operator U(~l 
which we have introduced represents the transi
tion matrix for at ransition in which i photons, 
n electrons and p positrons present in the 
initial state are absorbed, and j photons, m elec
trons, and a positrons emitted (the emitted particles 
belong to thefinal state). In this way we clearly 
take into account the fact that the general scattering 
matrix consists of a sum of the operators of all 
particular types of transition. 

However, the mere "splitting" of the transition 
matrix U into a sum of partial transition matrices 
U <t) is not enough. One has to find a set of 
equations which connect all the U <~) and solve 
these with some or other degree of accuracy. We 
Have previously given such equations 1 for a 
simplified problem. The method used here of 
"splitting" the equations can be extended to the 
general case. The essence ofthe method is to 
replace the basic equation (10), which, with the 
use of (4), may be written in the· form 

(5) 
the 

+ v (x)) lp. (u (x) + v (x))- (u (x) + v(x)) (ii (x) 

+ v (x))";~'-1 (11~+ 1 (x) + A~-l(x))~ u<:;! [cr], 
:; 

by a system of equations which (a) when added 
together replace (5), (b) when taken separately, 
would each describe a process withthe emission 
and absorption of a given number of particles, as 
distinct from (5) which contains the whole set of 
possible processes. The fact that an equation 
describes a process with a fixed number of emitted 
and absorbed particles means that each term in the 
equation must describe the emission and absorp
tion of the same number of particles. 

In "splitting" Eq. (5) one must note that U <t> 
contains i photon absorption operaf!j!~S A(-) , 
and j photon creation operators A • Similarly, 
it contains n operators u, m operators u, 

p operators v and a operators v. The system of 
equations obtained after this "splitting" may 
be written schematically in the form 

ihcoum I ocr - ~ H(~) u<!;') 
' -~ (:;') ' (6) 

where H(~(\ is an interaction operator which 
·represents one of the sixteen terms in Ji(x), and 
where the labels in e may differ from the corre
sponding labels in .;on the left-hand side at 
most be .one each ( some of the numbers n, n' 
m, m'; p, p'; a, a'may also be the sam~). One 
may show without difficulty that the system of 
equations (6) is consistent, but we shall not give 
the proof here. 

We shall not write out the right-hand side of 
Eq (6) explicitly, because of its unwieldy form 
(it contains 128 terms) but we shall only discuss 
the method of construction of these terms, and 
consider a number of typical examples. 

The values whic hthe labels .;'may take in a 
term on the right-hand side of (6) depend on which 
of the operators A ( +), A (- 1>, u, u, v, v occur in 
that term. For terms containing A<->, i'=i-1; 
j'= j, or i'= i, j'= j + 1. In the terms with 
A(+) 0, 0 0, •• , 0+ ., 0 • 

, £ = £, J = J-1, or £ = £ l; 1 = 1 • In qmte a 
similar wty one can express the labels n ', m' 
and p 'a' in terms of n, m, p and a according to 
which operators ofthe electron-positron field a'ccur 
in the term under discussion. The only difference 
is that each term contains two electron-positron 
field operators, which may be grouped in pairs: 
u and ii, v and v-; u and v, and u and v, whereas 
the electromagnetic field operator occurs only 
once. This difference reflects the inportant fact 
tha photons are absorbed and e.mitted singly, 
whereas the creation and annihilation of the par
ticles ofthe electron-positron field can occur 
only in pairs (electron and positron). This causes 
no essential complication in the determination of 
the labels n ', m ', p' and a~ but in writing them 
down one has to remember the effect of the various 
spinor operators. 

Consider a few terms as examples: 
1) [[..,. A (-)uUU-1. j; n-1. m-1; p, o) 

'Y. P· • 

This term describes the absorption of a photon, 
and the absorption of an electron in one state and . . . . ' 
Its emissiOn m another; the total number of 
spinor particles therefore remainsthe same, and the 
process looks like the transition of an electron 
from one state to another with the absorption of 
a photon. 

2) - <+) " 0 0 0 U'Y A uUl'· j-], n, m, p, cr) 
I P· "' • 
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This term corresponds to the emission of a photon 
in the transition of an electron from one state to 
another. However, in distinction from the case 
considered above, the last transition is connected 
withthe absorption ( and emission) of an electron 
which was previously emitted (absorbed), and 
not withthe absorption or emission of "new" 
electrons. 

3) [i., A 1-r;;u (i. i+l; n, m-1; P. cr-1\ 
I !J. r • 

This term corresponds to the absorption of a 
previously emitted photon and the simultaneous 
creation of an electron-positron pair. 

4) V'' A <+luu U+l. j; n, m+I; r:. cr+ll 
I!J- JJ. • 

This term corresponds to the emission of a photon 
which was previously absorbed, and the absorption 
of a previously emitted electron-positron pair. 
· 5)v-· Al+liJUU.i-I;n,m;p-J,cr-1) 

I }L IL • 

This term correspondstothetransition of a positron 
from one state to another with· the emission of a 
photon. 

These examples will suffice to showthat all kinds 
of possible processes find their expression in the 
equations (6). 

The unwieldy form ofthe equations (6) is no 
unsurmountable obstacle for their analysis. In a 
number of cases a kind of "operator dimension 
rule" proves convenient: all terms in the equation 
must contain A ( +>, A<->, u, u, v, v to similar de
grees; it should, however, be remembered that 
certain bilinear combinations of creation and anni
hilation operators of certain fields have "zero" 
dimension ( if the operators relate to the same 
particles) in other words they are c-numbers. 

It is easy to see that the sum of all the equaions 
(6) gives the original Eq (5) , as it should do. 
Indeed, the sum oft he left-hand sides of (6) 
gives 

. . "\;1 I)U!"'.l 
the LJ ---acr-

The sum of the right-hand sides is 

~ hfi~~! 1 U 1 ;') =c ~.:7{U 1 ~'l = :lfU. 
-: '::1 -:;:1 

(7) 

(8) 

It is easy to see that the sum of (6) contains all 
the terms which occur on the right-hand side of 
(5) and that each term occurs only once. 

One can also show that the original equation 
(10) and the requirements (a) and (b) determine the 

system (6) uniquely. Indeed, if we add to the 
various equations (6) further terms whose sum 
vanishes, then requirement (a) would remain satis
fied, but (b) would be violated. And, similarly, 
any addition to (6) which would satisfy (b), would 
violate (a). Pence the transition from (1) to (6) 
subject to the conditions (a) and (b) is unambi
guous. 

We now turn to the problem of solving (6), i.e., 
of finding U (~). Consider first time-dependent 
problems (stationary states will be discussed 

'later) i.e. we require a solution which satisfies the 
initial condition · 

u<e) [_co'l = 1, [; (~) [ o-oJ = 0, (9) 

if(~) (i.e. at least one of the labels i, j; n, m; 
p, a) differs from zero. 

We look for the solution by the method of 
substitution, which consists in inserting, on the 
right-hand side of (I)) for the operator U <~ ') its 
value 

U-(1;') - i ( I) )-1 ~ ~~~~·) u; .. 
- - 1ic acr ~ <~"l • (lO) 

~" 

The operator (o/oa ), -l which is the inverse of a 
functional derivative, may in all the cases which 
we shall meet here, be interpreted as an integral 
over the four-dimensional region bounded by the
hypersurfaces a 0 and a. 

As a result of substituting (10) on the right
hand side of (6) there occur~ a u<~ "'> with ~ew 
labels (e'). This we can in turn express in terms 
of u<g), etc. As a resu'lt of such successive 
substitutions one obtains an equation of the type 

w<;> ~ (-i)i+i+2q 
8cr = q, :;•. ;• .... \ 1i c (11) 

[HI~! (-.a )-1 ... (~)-l Ii(,i+H2q-Il] u·(o) 
~~) i'lcr i'lcr (!;i+i+2</) 

+ ~ (-i)21 
1. !;', !;". ... ltC 

[H~~; ( ~') 1 (~)-1 H~~~t-1l 1 u<<;l+ Q 
(;') \ocr . . . i)cr (~21) . 

Here we have divided the terms on the right-hand 
side into three groups. The first consists of the 
terms which contain U (Ol. Each of these contains 
i, n, p annihilation and j, m, a creation operators 
for photons, electrons and positrons, respectively. 
In addition, these terms mav contain q operators 
A<+) and q operators A l-1 , whi ch form a combina-
tion (A(+) A l-)) of "operator dimension zero".* 

"'And a corresponding number of combinations of 
"operator dimtlm'}ioq z.ero" of electron-P.hoton fiel.d 
operators (uu), ~vv I smce to every electromagnetic 
held operator belong two operators of the electron-
positron field. 



694 V.I.GRIGORIEV 

The second group of terms in (11) contains 
U <-;> , where (,f) is that label which occurs on the 
left-hand side of the equation. The structure of 
the terms ofthis second group differs from that of 
the first group in that the numbers of photon 
emission and absorption operators contained in 
them are equal ( and equal to l). 

Finally, a third group of terms, which we have 
denoted by Q, contain those operators U <-; ') 
whose labels (,f') are neither zero, nor equal to that 
which stands on the left-hand side of (11). Ry 
carrying the process of substitution. far enough, 
we may make the order ofthe terms Q as high as we 
like, so that, at any rate in electrodynamics where 
the coupling constant is small, Q may be ne~:
lected. 

In solving concrete problems, we shall restrict 
the discussion to terms of a certain order, and 
neglect Q. To neglect Q is similar to the device of 
cutting off the chain of linked equations in the Tamm 
Dancoff method. 2 Omitting Q, we are left with the 
following equation to be solved: 

where 

{13) 

00 

K~;> = ~ ( tt:r B<1. 1> 
1=1 

In line with what was said above, the operators 
a(i+q. i+q) { ... }denote the sum of all possible 
permutations of A(+) and A(-) in operators of the 
tyPe 

(!;) ( B )-1 ( B )-1 H(!;i-1) 
H <I;') Bcr . • • Bcr <I;i l ' 

containing i + q operators A<-> and j + q 
operators A ( +), in such a way that q pairs of 
such operators refer to the same photon states 
(and form bilinear combinations which are c-num
bers). 

Equation (12) by itself is not sufficient. For a 
complete formulation of the problem, we must 

also write down an equation for U ( 0 > [ a J • 
This equation could be derived by the method of 
successive substitutions from the system(~); 
however, we shall not derive it in that manner, but 
obtain it directly from (12) by putting there 
(.f)=(O): 

w<o) [cr] 

Bcr(x) 

00 21 
= ~ ( !ci) B(l, 1) 

l=1 

(14) 

The final form of the equations to be investi
gated is 

(15a) 

cr cr 

= ~ K6~> u<o>[ crJ &,) + \ K)f.> u('f.) [ crJ d(J); 

cr 

u<o> [ cr J = 1 +-~ K 0 u<0> [ 0' J d(J). (15b) 

cr, 

In forming the Eqs. (15) we have made use oft he 
initial condition (9). 

Our next task consists in considering the 
Eq. (15). 

It goes without saying that the method of suc
cessive substitutions, with the omission of the 
Q terms, which we used in obtaining (15) is not 
the only way of solving the fundamental set (6). 
Even considering only approximae solutions one 
could have given other ways of approach, which 
might be more convenient, for example, in the case 
of strong coupling. However, we shall confine 
our attention to the discussion of the Eqs. (15) 
in view of their relative simplicity. Indeed, as 
has already been stated, our initial set (6) is 
most unwieldy. Although we have obtained our 
Eqs. ( 15) from (6), they can in practice also be 
written down directly without reference to (6). 

For this purpose we must only observe the. rule 
of "operator dimensions", according to which all 
the terms in each equation must describe the 
emission and absorption of the same number of 
particles (not only of photons, but of each other 
kind). One must then also allow for the fact 
that bilinear expressions of absorption and 
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emission operators relating to the same particle 
have "operator dimension" zero. 

From this "operator dimension" rule it is at 
once evident, in particular, that U (()may differ 
from the corresponding ~antity obtained from 
perturbation theory, v~!.~ = u d() only by a 
c-number factor (i.e., a factor of "operator 
dimension" zero). Using this fact, and noting 
also that 

"' 
u6<.> = \ K~") d(·), 

(1fi) 

we shall look for a solution of (15) in the IOrm 

" 
u(f.) [:1] = ~ K(\'f,) u(O) s(~) dw, (17) 

cr, 

where ((()is a certain unknown c-number 
quantity which remains to be determined, and 
u<o> [a] is found from Eq. (15b). It is 
easy to see that the insertion in (12) of the value 
of U (O) [ a ] obtained from ( 15b) by iteration is 
equivalent to an increase of q in the expression 
forK (( ) . 

We ~ay therefore write down the following (f). 
equation for the determination ofthe quantity ( · 

" 
K6?,) S1'f,J = K~",) + K\',) ~ Kf·J s(';) dcu. (18) 

"' 
We shall be interested only in the asymptotic 

solution for a -><Xl, a 0 _,- oo , and this makes 
it possible to write the equation for ( <( ) in the 
form 

-X> 

where R0 ( ,\) is the conjugate of K 0(( ) • 

We have written (19) in a form which makes it 
obvious that ~ (( ) qs a c-number. Indeed all 
coefficients in (19) are operators in diagonal 

form, and this proves our statement that ~( () 
is a c-number. 

We see from the relation (17) that the result of 
perturbation theo(; corresponds to the zero-order 
approximation ~ () = 1 in the solution of (19). 

If we represent ~(( ) in the form 

we find the following expression for the S matrix: 

( 21) 

If we restrict the discussion to one-electron 
problems, and neglect in the expression for 
K ( t ) all terms with q > 0, then the value 
(21) for S <s- 1 reduces to that obtained earlier 
from the generalized damping theory. Thus our 
solution reduces, in appropriate limits, to damping 
theory and to perturbation theory. 

We do not need to investigate specially whether 
the normalization is ,correct, since this is already 
proved within the framework of damping theory. 
Thus the solution which we have constructed satis
fies the requirements set out in the beginning of 
this paper. * 

We see from (20) that the perturbation theory 
. . f . . h R < fl-o gtves a satts actory approxtmatwn w en , 

which is usually the case at low energies. Rut if 
R (() is appreciable, then the result may differ 
appreciably from that of perturbation theory. It 
has been shown in a number of examples that 
~([}may play the part of a cut-off factor, which 
will reduce the general magnitude of the cross 
sections at high energies. However, the appearance 
of the general solution does not in general ex

clude other possibilities. The detailed discussion 
has to be carried out separately for each case. 

We still have to refer to the elimination of 
divergences. Sincethe whole theory has been 
formulated in a manifestly covariant way, we may 
use the same methods for eliminating the diver
gences as in the usual theory. The results ob
tained after removing the infinities, may, however, 
differ from the results of perturbation theory. We 
shall not examin~ the questions of self-energy and 
charge, since they do not lie within the scope of 
this paper. 

The method explained above is applicable not 
only to the case of the electron-positron and the 
electromagnetic fields, but also to any arbitrary 
combination of fields. As we increase the number 
of interactions which are considered, we must add 
to ( ~) more labels; the total number of pairs of 
labels in(~) equals the number of types of 
elementary particles. 

However, our method is general notonlyin itsapplicabil
ityto any types of field. This method may be used also to 
study various kinds of generalized theory (those contain
ing derivatives of higher order, nonlinearinteractions, some 
kind of nonloc al generalizations, etc.). We note incident
ally that in theoneswith nonlineoc interactions( 11 ,...., cpn)3 
the damping must play a much more significant part than 

* Actually our solution corresponds to a partial 
summation of a series of successive approximations. 
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with the usual linear interactions. 
The method may also be generalized to stationary 

problems for which one cannot determine initial 
conditions. In that case the problem reduces to a 
set of homogeneous integral. e ~at ions whic~t ma6 
be obtained from (12) bv omlttmg the terms m U 
In solving stationary problems one may use the 
method of residues. Problems involving several 
particles lead to equations of the Rethe-Salpeter 
type. 

In the region of low energies the method pro
posed above leads, as a rule, to the same results 
as perturbation theory (in corresponding approxi
mations). At high energies, howeve~, the correc
tions may be appreciable, in particular as regards 
the relative importance of various processes. 

It is a valuable duty to thank I. M. Lomsadze 
for valuable discussions. 

1V. I. Grigoriev, J, Exptl. Theoret. Phys. (U.S.S.R.) 
25, 40 (1953). . 

2 
I. Tamm, J, Phys. USSR 9, 449 (1945). 

3 . 
D. Ivanenko and V. Lebedev, Dokl. Akad. Nauk 

SSSR 80, 357 (195 I). 

Translated by R. E. Peierls 
180 

SOVIET PHYSICS, JETP VOLUME 3, NUMBER 5 DECEMBER, 1956 

Theory d Wove Motion of on Ele_ctron Plosmo 

A. I. AKHIEZER AND R. V. POLOVIN 
Physico-Technical Institute, Acacemy of Sciences, Ukrainian SSR 

Kharkov State University 

(Submitted to JETP editor March 19, 1955) 

J, Exptl. Theoret. Phys. (U.S.S.R.) 30, 915-928 (May, 1956) 

A general investigation of the nonilinear wave motions of an electron plasma has been 
carried out for arbitrary electron velocities. Temperature effects are not taken into account, 
and the state of the plasma is characterized not by a distribution function, but by the particle 
density. A correspondence is establ.ished between the wave motion of the plasma and the 
motion of a nonrelativistic particle in a certain potential field. The variation of the fre
quency of longitudinal vibrations on the velocity amplitude has been determined. Nonlinear 
transverse vibrations of the plasma, and vibrations close to these, are also considered, and 
their frequencies determiped. A number of relations are established for the complicated 
longitudinal transverse plasma oscillations. 

I. FUNDAMENTAL EQUATIONS 

IN the study of the oscillatory behavior of an 
electron plasma, i.e., of an electron gas neutral

ized by ions, or a neutralized electron beam, it is 
usually assumed that the electron velocities and 
the density fluctuations are small, so that one may 
use a linearized system of equations. This scheme 
makes it possible to determine the frequencies of 
oscillation and to discuss, by means of gas-kinetic 
considerations, the part, played by temperature ef
fects 1,2, which turn out in general to be unimportant. 

Nonlinear plasma oscillations were considered in 
. 3 

a previOus paper , in which temperature effects 
were neglected, and the electron velocity was as
sumed to be finite, but essentially nol'lrelativistic. 

Under these assumptions it is found that the oscil
lation frequency is independent of the velocity 
amplitude, and obeys the classical formula of Lang
muir. 

The purpose of the present paper is to investigate 
the oscillatory motion of the plasma quite gener
ally, for arbitrary velocities. But, as in Ref. 3, we 
shall neglect temperature effects, i.e, we shall 
assume the plasma temperature to be zero. This 
approximation is very natural when we are investi
gating nonlinear oscillations· even in a '' higlr 
temperature" plasma, and even more so in the study 
of plasma oscillations in electron beams, where the 
temperature is practically zero. Under these condi
tions it is not necessary to introduce a distribution 
function to specify the state of the plasma, but one 


