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1-3 h The present paper is a continuation and further developmmt of Bershtein's work on t e 
natural line width, and Gorelik's work4 •5 on the "technical" width of a vacuum tube generator, 

I N any actual vacuum tube generator there are 
always fluctuations of the frequency (or phase) 

which produce a smearing of the spectral line. If 
we consider fluctuations arising from shot or 
thermal noise (i.e., from "natural" causes), then 
. we speak of the natural line width. If on the 
other hand we consider "technical" causes of 
fluctuation, such as "microscopic" effects, then 
we speak of the technical line width. It is of 
intera;;t to consider the general question of the 
relation of the shape of the spectral line of a 
generator to various characteristics of the fre
quency fluctuations, which depend on the method 
of generation of the fluctuations. The present 
paper treats this problem. 

1, THE GENERAL EXPRESSION FOR THE SPECTRAL 
IENSITY OF THE OSCILLATION 

We consider an oscillation whose frequency 
fluctuates: 

Zt = A cos (w0 t + <pt), 

t 

<pt = ~ Aw~; d~. 
t. 

(1) 

(2) 

A is the anplitude, cu 0 is the average value of. ~he 
frequency, <pt is the phase of the oscillation and 
L\cut is the frequency fluctuation, whose average 
value is zero. -

The spectral density Sz(cu) is equal to 
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00 

sz (cu) = 3_ ~ QJZ ('t) COS (J)'t: d't, 
r. J . (3) 

0 

where 
T 

<Pz (-;:) =lim ~ \ Zt Zt+r dt (4) 
T-+ co .) 

0 

is the correlation function for the quantity z . 
t 

Substituting (l) in (4), we obtain, after some simple 
transformations: 

<Pz (-;:)=lim 
T->- co 

where 

T 
A2 \ 
2T J COS (w0 't + Arp) dt, 

0 

t+-r 

A:p :=co :Pt+-r- :Pt = ~ Aw~; d~. (5) 
t . 

We shall assume that the frequency fluctuations 
.represmt a stationary random process and are a 
'Superposition of a large number of random, 
statistically independent, disturbances. In this 
case, L\ <p also describes a stationary process and, 
in addition, has a normal distribution around zero 
value. Consequently, on the basis of the quasi
ergodic theorem 6 , the time average of a function 
of L\ <p em be identified with the statistical average 
over the corresponding ensemble (which we shall 
denote by a bar over the symbol which is averaged). 
Thus, · 



654 A.N.MALAKHOV 

smce 

sin~cp =0. 

To find the average value of the cosine we use 
the well-known formula 

+co r-
~ e-ax2 cosqxdx= J~ .!}e-q'i•" 

-00 

and obtain 

cos~cp=exp(- 1/2~92)· (7) 

Combining (7) and (6), we find 

<Pz (") = 1/ 2 A2 COS <>l0 'teXp (- 1/2 ~rp2 ). (8) 

To get L'lcp2 we square both sides of (5) and aver
age them: 

t+-r t+< 

~ 92 = ~ ~ ...,.-~-(,)-~ --:-~-(,)-11 d~ d YJ 
t t 

t+-r t+-r 

= ~ ~ <P (~- r;) d~ dYJ, 
t t 

where¢( T) is the correlation function of the fre .. 
quency fluctuations, which we shall assume to be 
given. If we change variables in the double 
integral and use the fact that the correlation func
tion is even, we get 

T 

L\rp2 = 2 ~ ('t- ~) <P (~) d~. (9) 
0 

We write the eorrelation function in the form 

<t> (") = ~(,)2 R ('t), (10) 
where R ( T) is the correlation coefficient of the 
frequency fluctuation L'lw1 and ~is the mean 
square rlevi<tion of the frequency. 

Combining (10), (9) and (7), we get the final 
expression for the correlation function: 

<Pz ('t) (ll) 
T 

= 1/z A 2 cos 6)0 't exp [- A<>l2 ~ ('t- ~) R (~) d~]. 
0 

We shall discuss some of the features of this 
result. Formula (9) shows that ~does not 

depend on the time coordinate t, but depends only 
on the time interval T, i.e., the distribution of L'l cp 
actually does not depend on the time, but is 
stationary. flo wever, this is not the case for the 
Phase cp1 itself or the quantity cf., which do de-

t 

pend on the time. This means that the distribution of 
the phase, though normal, is not stationary. 

The problem of finding the spectrum of the os
cillations in the presence of frequency fluctuations 
has also been eonsidered by Middleton 7 • For ex-

ample, he treated the casewhere the spectral 
density of the frequency fluctuations has a 
Gaussian shape. However, in our opinion, \•Iiddle
~ made the mistake in his calculations of setting 

cp; = cp;+T.Actually, one can show that even for 

small T, 

92t+-r - Cf2t = 2't ~ <P (~) d~ =!= 0. 
0 

ny finding the parameters of the normal proba
bility distribution for the quantity cpt' one can show 
that the phase fluctuations follow a diffusion 
law, which clearly should be the case, since the 
phase shifts due to frequency fluctuations pile 
up [because of the time integral in Eq. (2)]. This 
diffusion law for the phase fluctuations was con
sidered in more detail earlier by Rershtein in the 
papers mentioned, in which he investigated the 
phase fluctuations of a tube generator arising from 
shot and thermal noise*. 

Substituting the value (ll) for the correlation 
function in Eq. (3), we find the spectral density 

Sz (<>l) = S (<>l) + S (- <>l), 

where 
<X> 

A2\ s ( (,)) = 2; .) cos ( <>lo - (,)) " (12) 

0 
T 

x exp.[- ~<>l2 ~ ("- ~) R (~) d~] d-::. 
0 

The spectral density in the neighborhood of the 
average frequency w 0 is determined mainly by the 
first term S ( w ), since it had a singularity just 
at the point w = w 0• The second intewal S( ·-w) 
produces no essential change in the spectral 
density S/w) at w = w0• 

Thus Eq. (12) gives the "shape" of the spec
tral line. 
2. GENERAL INVESTIGATION OF THE SHAPE OFTHE 

SPECTRAL LINE 
Let the frequency fluctuation L'lw be character-

t 

ized by its correlation time T 0, defined so that 
for T > T0 the quantities llw1 and L'lwt+T may be 

treatel as practically independent. 
Let us first consider the limiting case when the 

frequency fluctuations are slow or large, i.e., the 

case when .'~w 2 T~ » l. To find the spectral 
density for this case, we consider the expression 

T 

~ ("- ~) R (~) d~. 
0 

If Tis taken outside the integral, then after 
changing variables, we get 
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~ 1 

~ ("- ~) R (~) d~ = 't2 ~ (1 - ~) R ('t~) d~. 
0 0 

In this case the spectral density (12) is given by 

(13) 

1 

x exp [- ~w2 't2 ~ (1 - ~) R ('t~) d~] d't. 
0 

It can be shown that for t-w 2 ~ » 1, the 
quantity R (T~) in Eq. (13) can be set equal to 
unity without significant error. As a result, we 
get 

00 

A2 \ 1-
S(w)= 27t j cos(w0 - w)-cexp[- 2 ~w2 't2 ]d't. 

0 

Calculating this integral, we get finally, 

A 2 -- { (w )2 S(w) =--;- (2..-: ~w2)'f•exp - o-w } . c14) 
2 2 Llw~ 

Thus if there are slow or large fluctuaions of 

the frequency, so that t-w 2 T~ » 1, the line is 
broadene<l and coincides in shape with a Doppler 
broadened line, with "line width" equal to 

2 ( 2t.J) y,. 

We now consider a second limiting case, opposite 
to the first. Suppose that there are rapid or small 
fluctuaions of the oscillation frequency, so that 

t-w 2 T~ « l. To fin<l S ( w ), we introduce the 
auxiliary quantity k = k ( T0 ), such that 

+co 
k ('t0) ~ R ('t) d't = 1 

-oo 

(15) 

for all values of T 0 • Since for T0 --> 0 the quantity 

R ( T) differs from zero only for small values ofT 
[we recall that R ( 0) = 1 ], it is obvious that 

where o ( T) is the delta function. 
We write (13) in the form 

00 

S (w) = ~; ~cos (w0 - w) 't 
0 

-- 1 

X exp [- .:l~ 2 't2 ~ (1-~)kR ("~)d~]d't. 
0 

One can show that for t.w 2 T~ « 1, the quantity 
kR ( T~) in this expression can be set equt to 
o( T~) without serious error, so tqat 

* The vaidity of the diffusion law for the phase fluc
tuations of a tube generator for arbitrary T is also 
shown by the work of Rvtov8 •9 

Computing this integral, we get finally 

A2 Wj2k 

S (w) = 2rt (,:lw2/2k)2 + (w0 - w) 2 
(16) 

This spectral <lensity coincides in shape with 
that obtained by Rershtein for the natural broaden

ing of the line. 
Thus if ther~e rapid or small frequency fluctua

tions, so that t.w 2 T~ « 1, the line emitted by the 
oscillator suffers a broadening, and has a line 
shape identical with that for natural broadening 
with a "line width" equal to t.w2 /k. 

We note that from Eqs. (14) and (lfi) it follows 
that the Doppler and natural broadening may, in 
gener<i, r~resent different spacial cases of the 
same process of "smearing" of the line emitted 
by an oscillator. 

3.EXAMPLE 

We consider the special case where the fluctua
tion of the generator frequency has a correlation 
coefficient equal to 

R(c) =e-~ 1~1. "o= 1/r:t.. 

The first limiting case, where t.w 2 » (),. 2 , leads 
without change to Eq. (14). To consider the 

second limiting case, where t.w 2 « (),.2 , we de
termined the auxiliary quantity k ( T 0 ). From the 
<lefinition (15) we find that k ( T0) = (J,./2. Thus, 
for the second limiting case, 

Now suppose that there is some arbitrary ratio 

between t.w2 and (),.2 • Returning to Eq. (12) and 
computing the integral in the argument of the ex
ponential, we get: 

S (w) = 
00 

~; ec ~ cos (w0 - w) "exp [- B"- Ce-(1.'" I d-e, 
0 

where C = t.w 2/ (),. 2 , B = (),.C. Computing this in
tegral by expanding in series, we get the general 
expression for the spectral density for our ex
ample in the form 
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(18) 

If ~w 2 « ex 2 , then only the first terms in the ser
ies (18) are important: 

where, as expected, the first term of the series co
incirlP.s with Eq. (17). 
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The vibration spectrum of a disordered crystal is studied. Calculations are made for 
an isotopic mixture, although the method could be applied under more general conditions. 
The mass of each atom is taken to be a random variable, and the deviation of the· mass from 
its average value is not assumed to be small. The spectral density and the vibrational 
part of the free energy of the mixed crystal are determined. 

T. HE determination of the vibration spectrun1 of 
a disordered system, for example a mixed 

solid, is a highly interesting problem. A sin1ilar 
problen1 was considered by one of the authors 1 

in connection with the optical properties of mixed 
solids; at that time we investigated thoroughly 
only those aspects of the problem which are direct
ly relevant to infra-red spectroscopy, (in particular 
the question of the existence of impurity fre
quencies). Dyson 2 considered the same problem 
for the special case of a disordered linear chain 
with nearest-neighbor interactions. But Dyson's 
method is by its very nature not capable of ex
tension to three-din1ensional systems. 

In the present paper we describe a method which 
is free from these limitations. The method is an 
extension of earlier work by one of us. 3 - 6 We 
apply the method here to the case in which the 
atoms in the system differ only in mass (a mixture 

of isotopes). For the sake of clarity and simplicity 
of exposition, we consider only an idealized lattice 
in which all vibrations take place in one direction. 
This shortens the analysis considerably, without 
changing the essential nature of the problem. 

There exists a deep-lying similarity in the 
effects of the destruction of translational invari
ance upon the energy spectra of phonons and of 
electrons. Hence the results of this investigation 
should be qualitatively valid also for electronic 
spectra. 

1. THE METHOD OF TRACES 

The equation for the vibrations of a lattice com
posed of a mixture of isotopes of a single element 
has the form 

Ar r' ")'. -=- x (r') - (02 x (r) = 0. (l) 
~ mr 
r' 


