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effect upon the velocity of second sound in a
standing wave is of the order of a fraction of a
percent:

In conclusion, I thank L. D. Landau for his
considerationof these results.

11, M. Khalatnikov, Dokl. Akad. Nauk SSSR 79, 237
(1951).
Translated by S. D. Elliott
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Remarks on One Variant
of the Equations of a Nonlocal

Field

A. R. Asanov
Leningrad Physico-Technical Institute
Academy of Sciences, USSR
(Submitted to JETP editor January 19, 1955)
J. Exptl. Theoret. Phys. (U.S.5.R.) 30, 619-620
(March, 1956)

N a nonlocal field theory, where the wave-
Ifunction of a particle U(x,,, £,) depends on
‘¢ internal’’ variables f as well as the ordinary

space-time variables x (p 1,2,3,4) it is natural
to interpret the orbital angular momentum of
‘¢ internal’’ motion as the intrinsic angular momen-
tum (spin) of the particle. We will assume the
functlon U to be scalar; then the equation of
Markov! for a free particle in the momentum repre-
sentation has the form:
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where

X (s r) =\ exp (—ikyx,} U (0 r) i,

and A and w are constants with the dimensions of
lengths. We introduce the notation f = _w2k2“ ;
this is the square of the mass measured in units
of i/ w. In arest system Eq. (1) assumes the
form
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(2)
where i = 1,2,3 and r_. is the real variable
r =- LT The solutlons of (2) will be sought in
tBe form X (r,,) = g(r;) ®(r,), separating the
dependence on space and tlme variables. On the
function X we impose the requirement of
boundedness in all of the 4-space of internal
coordinates.

For the functions g(r;) and ®(r ) we get
the equations

(— (0%9r%) + r2) g = kg, ®3)
(— (0¥0rD) - 1) @ = (f — k) D, @)

where k is a constant of separation of variables.
The solution of Eq. (3) in spherical coordinates
r=|r|,0,q¢, as is well known, has the form

Erim (l’, 9, 9)= Ylm (e: Q) r e—le’l‘(ll;i_—lézl—s)ﬂ (rz)r
where y;  is the spherical function and L is the

associated Laguerre polynomial. Here the
quantity &k assumes the values

_4n+21+3 (5)

where 1 =0,1,2,...; n=0,1,2.
Thus for given % the internal angular momentum
! can assume the values 0,2, . . . ,(k=3)/2 or
£,3,...,(,—=3)/2 depending on whether % is odd
or even. The projection of the internal angular
momentum m assumes the values | m| £ [.
Equation (4) has bounded solutions only for

f—k=2n4+1, n=20,1,2, ... (6)

Its solution then has the form
]
@, (ro)=H, (r)e " */%,

where /_ is the Hermite polynomial From
condition® (6) we obtain that for given f the
quantity k& can assume the values 3, 5,

f— 1. However, from conditions (5) and (6) 1t is

‘evident that f can assume the values 23 +4
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where 8=0,1,2, ...
For given f the desired solution of (2) has the
form

Yntm (7 05 @, 70) = Gyim (7, 0, @) Os gy (70)

and is degenerate with multiplicity (8+1) (8+2)
(B +3) / 6. The obtained solutions make it
possible to classify all states according to their
mass, internal angular momentum and ¢ ¢ internal
time number’’ k. Thus, for f = 4 we have the
lowest nondegenerate state, in which % = 3
(corresponding to ny,=0) and the angular momentum
[=0. For f=6, we have two states with different
spins; in the first £ =3, [ = 0 and in the second
k=5,1=1. For f = 8, for example, we have in
addition to states k =3,/ =0and k£ =5,/ =1 also
the states for k& = 7 with angular momenta I = 0
and [ =2,

The considerations presented have, finally, an
illustrative character and lie in the direction of
attempts2'3 to introduce spin in a natural way
in a theory with a mass spectrum.

In conclusion we express our gratitude for his
guidance to Prof. M. A. Markov.

IM. A. Markov, Dokl. Akad. Nauk SSSR 101, 449
(1955).

v. L. Ginzburg and I. E. Tamm, J. Exptl. Theoret.
Phys. (U.S.S.R.) 17, 227 (1947).

3
Hara, Marumori, Ohnuki and Shimodaira, Prog. Theor.
Phys. 12, 177 (1954).

Translated by D. Finkelstein
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Further Uiscussion on the Guantum Theory
of the Padiating clectron
A. A. SokoLov
Moscow State University
(Submitted to JETP editor December 25, 1954 )
J. Exptl. Theoret. Phys. (U.S.S.K.) 30,
623 (March, 1956)

ELIP! has made a series of critical remarks in

his reply to our work on the quantum theory of
the radiating electron. However, these critical
remarks are based on a modification of our Eq. 182
which is given by Nelip! in the form

e=(1 -—B2 smza)<1 + 2\;7) (A)

+0<_"j_ v ),

n2 4 n3
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(cf. Eq. A, p. 423 of Ref. 1). As a matter of fact,

this formula has the form

e =(1—B2%sin%29) (1 + v/2n). (B)

(cf. Eq. (18) of Ref. 2).

In connection with this formula we made an obser-
vation that the higher order terms of (X)2 of the
expansion should also have the small multiplier
(1'= B2 sin? 9). Therefore the expression (A)
has the form

e = (1 —B2sin?9) (1 +T“n> ©
+(1 — B%sin?9) 0 (":—2» ) ;;_Z),

which was indeed used by us in our previous work?
and also in our following articles on the quantum
theory of the radiating electron (cf., for example,
Eq. (43) of Ref. 3).

Furthernore, Nelipl ascribes to us still a second
inaccurate formula (B) (p. 423) which does not
follow in any way out of our Egs. (16) and (18) of
Ref. 2. Therefore the critical remarks that our
method developed in Ref. 2 has a small region of
agplicability by its limitation to the magnitudes
v3 / n? << 1 appear to be a misunderstanding as
they are based on the modification pointed out above.
From our original £q. (18)2 it follows that the
terms discarded by us are of the order (v/ n)? .,

Therefore we cannot accept the criticism made
by Nelip and our previous observations should

remain valid.**®

IN. F. Nelip, J. Exptl. Theoret. Phys. (U.S.S.R.)
27, 421 (1954).

2Sokolov, Klepikov and Ternov, J. Exptl. Theoret.
Phys. (U.S.S.R.) 24, 249 (1953).

3A. A. Sokolov and I. M. Ternov, J. Exptl. Theoret.
Phys. (U.S.S.R.) 25, 698 (1953).

4

A. A. Sokolov, J. Exptl. Theoret. Phys. (U.S.S.R.)
24, 488 (1953).

5Sokolov, Matveev and Ternov, Dokl. Akad. Nauk
SSSR 102, 65 (1955).

'{gzinslated by M. J. Stevenson



