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on this scheme shows that such nuclei must be: 

66Dy 95165 with isomeric transition of type E3 2; 

'If i79 (E3 l\''3)2. WI 183 (E'3 '1'~3)2· W185 
72h 107 ' j '74''109 'VJ '74 111 

(E3, M3 )2 ; 760s 1 i~ 1 ( M3 + E4 ) 11 ; as well as 

68Er9~67; 72Hf10~77; 70 Yb 101171. In the first 

five nuclei isomeric states have already been 
observed, and their expected multipolarity (which 
agrees with experimental data) is given in paren
theses. In an analogous manner it is possible to 
explain the absence of an isomeric state in the 
h . . T 1o 1 12 · th · eaviest Isotope 4 3 c 56. , smce IS nu-
cleus is more strongly deformed than the lighter 
isotopes Tc 93 "99 in which isomeric states are 
observed. Taking account of deformation makes it 
also possible to explain the appearance in the 
island 41 ::;_ Z, N ,~ 47 of isomeric transitions 
of type E3 9. 

Thus, taking into account of deformation makes 
it possible to explain the absence of isomeric 
states in nuclei with 63 ::;_ Z ::;_ 75. the small 
number of isomeric transitions and their anoma
lous multipolarity with 93 <;;..N ::;.ns, as well as 
the absence of an isomeric state in Tc 101 and 
the appearance of transitions of type E3 in the 
region 39< Z, N < 49. 

In conclusion, it is a pleasant duty to express 
my deep gratitude to L. A. Sliv for detailed 
discussion of this papa-. 

l 
C. E. Weizsacker, Naturwiss 24, 813 (1936). 

2M. Goldhaber and R. D. Hill, Rev. Mod. Phys. 24, 
179 (1952). 

3 
L. W. Nordheim, Phys. Hev. 75, 1894 (1949). 

4 
E. Feenherg and K...C. Hammack, Phys. Rev. 75, 

1877 (1949). 
5 

M. G. Mayer, Phys. Rev. 78, 16 (1950). 
6 

M. Goldhaber and A. W. Sunyar, Phys. Rev. 83, 
906 (1951). 

7 
R. Katz, Phys. Rev. 91, 1487 (1953). 

8 
G. Scharff-Goldhaber, Phys. Rev. 90, 587 (1953). 

9 
A. Bohr and B. Mottelson, Kg!. Danske Videnskab. 

Selskab. Mat.- fys. M_edd., 27, 16 (1953) . 
10 

S. Nillsen, Kg!. Danske Videnskab, Selskab., 
Mat. - fys. Medd. 29, 14 (1955). 
ll 

W. Michelich, Bull. Arner. Phys. Soc. 30, 46 
(1955). 

12 
D. R. Wiles, Phys. Rev. 93, 181 (1954). 

Translated by A. V. Bushkovitch 
127 

Energy Spectrum of High Energy Ionizing 
Particles Passed Through a Thick Layer 

of Matter 

lu. F. 0RLOV 

(Submitted to JETP editor December 2, 1955) 

J. Exptl. Theoret. Phys.(U .S.S.R.) 30 

613-614 (March, 1956) 

T HE energy spectrum of a fast ionizing particle 
after passage through a thin la~r of matter 

for which the average energy loss t1E < < E is 
determined by the relation 

S == tl.Efc:maxLi. 

where L i is the well-known ionization logarithm 
and f max (E) is the maximum energy loss per 
ionizing collision where m is the electron rest 
mass, 

( 
2m[32 \ 

Li = 2 In Jcp (1- [32)- [32)• (l) 

2m (£2- lL2) 
c:max = " , i3 = V/C, 

[L" 

where m is the rest mass of an electron, p. the rest 
mass of the ionizing particle and I is the ioni-ave 
zation potential. If W (£,E) is the probability 

per unit path length of a collision with an energy 
loss£, then the distribution function for energy 
loss t1 after passage through a layer 8 x has the 
form 1• 2 : 

f(Sx, tl) = (21tp (2) 
00 <lO 

X~ dz exp {iztl- oX~ w (e, E) (1-e-ize)de:}. 
-00 0 

For S « l Eq. (2) gives the curve due to Landau, 1 

and for S > > l it yields a Gaussian distribution. 2 

For the case of a thick layer ( S > > l) we shall 
obtain a more accurate distribution function than 
the Gaussian. If we allow firsts >> l, but with 
M << E, then the distribution function can be 

expanded in Hermite polynomials: 

tp (Sx, y) = (21t)-'lze-Y 212 ( 1 + ~ anHn (y) ); (3) 
n:>3 

00 

= (n!p ~ tp (Sx, y) H 12 (y) dy, 
-co 
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(5) Using the formula for a derivative of a a-function 
00 

ana (r:t.)jar:t.n = (21t)-1 (i)n ~ yn exp (ir:t.y) dy; 

we obtain 
-co 

l ~ ~ [32 ~, 
<p (ax, y) = (21t)-'f,e-Y'/2 1 +_a Ha (y) + _4_ H4 (y) + _3_ Ha (y) + .. ·J 

6~i' 24f3~ 72~: ' 
(fi) 

Em ax 

~n =ann= ax ~ e:nw (E, E) dE, n > 1. 
0 

(7) 

Siq£e W(£,E) = const. (f3f)-2 and const. {3" 2ox 
=MIL., we have: 

' 
<p (A£, y) = (21t)-'f,e-Y'/2 [ 1 + b 8-'/2 (ya- 3y) 

+ ...!... ( 4- 6 ? + 3) (8) 
72s Y y 

+ 28~8 (y 6 -15y4 + 45y2 -15) + .. .J. 
The series of Eq. (8) is asymptotic. For lIs 
"' 1, y "' 2 the first two terms ·give an accuracy of 
abuut 10 %; for y ~ 1 one may use four terms of 
Eq. (8). _ 

Assume now that M "'-' E 0 • We shall denote the 
distribution function of energy after passage 
through a thick layer x by ¢ ( x, E' ). It will evidently 
be given by the relation 

00 

(!> (x, E)= ~ II> (x- ax, E + A)f (ax, A) dA. (9) 
0 

Expanding ¢ as a series in powers of A and ox 
and letting ox go to zero, we obtain the differential 
equation 

all> -- aiD 1 - a2T 1 - aa!l> 
ax= e: aE + 2! e: 2 a£2 + 3! e:a ac'3 +· · · (1 0) 

If W_!l discard in Eq. (l 0) the terms with high order 
offn ,n ~ 3 andjn the coefficients of'f and €2 we 
replace E by E ( x )>we ohtain a Gaussian distri
bution. This case corresponds to the following 
two assumptions.* First, ¢ ( x, €) should be suf
ficiently narrow so that it is possible to neglect 
the dependence of !}I.e diffusion coefficient€2 onE 
and replace E by E(x), second, the energy of the 
particle should not he so large that great energy 
losses E' would take place. For highly relativistic 
particles these conditions are not fulfilled. 

The approximation will be more accurate if 
instead off' n in Eq. (1 0) we take the quantity 

00 

~ II> (x, E) dE 
0 

tmax 

~ e:nW(e:, E)de:. 

0 

For a faster computation of corrections we 
notice that the quantity f3 has the same addi
tive pr<perties according tff Eq. (7) as the quan
tity {3 2 = 112 - K 2 which enters into Eq. (5) for 
y . Precisely this property of f3 was used by 
Pomeranchuk, who obtained the baussian distri
bution for a thick layer. Therefore we shall first 
obtain a distribution function for a thick layer by 
replacing all {jn in Eq. (6) by 

Bn (E)= 1'1 ::1 I dEl r II> (x (EI). E) dE (ll) 
if 0 

e:max 

x ~ e:nw (e:, E) dt. 

0 

In order to obtain f3 2 = (E -E)2 to the first 
order of ll s, it is sufficient to take for ¢ in 
Eq. (11} the Gaussian curve of Pomeranchuk; to 
compute'$.- it is possible to let¢ (E ,E 1 } equal 

to o (E- E 1 ). In this approximation 

X (Eg-E3 +3E[J.2 -3EotJ.2) +'la(m2Li2tJ--4) 

XI3ey4-Ef£- tJ-2E~!E + 3tJ.2E0E 

+ 'E4J4 - 2tJ.iE2- 3tJ.'- 3tJ.' In (£0/.E)J; 

(12} 

B3!8Jlj~ = 1/ 6 (mLi/2tJ.2)'/• [(E~-E5)j5- 2[J.2 (E~ -P)/3 

+ [J-4 (£0 - E)] + 3tJ.'Eo/.Ei (13) 

X [(~-P)/3- [J-2 (E0 - E)]-"1•; 

Ill (y) = (21t)-'l,e-Y'I2 [ 1 + (B3!6B;j 2) (14) 

X (y3 - 3y) +· .. ], 
y = -B;-''• (E -E). (15) 

The j:q. (14) has a simple and descriptive form 
for E < < E 0 • For example, at the end of the 
passage forE 0 > > p.: 
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<D (y) = (21t)-'f•e-Y'/2 [ 1 + 110 c~~;Eor• (ys- 3y) 

1 mL-E 3 mL.E ] + ___ , _o (y4-6y2+3) + ___ ,_o(y6-15y4 +45y2-15) + .. ; 
28 (1.2 400 (1.2 (16) 

y2 = (E- £)2 (3Li(1.2/2mEg) (1 + 3mE0/2Li(1.2P; (17) 

(18) Bn = (2m/(1.2)n-lE2n-l/(n -1) (2n -1) Li (Eo), E ~Eo. 

From Eq. (16) it is evident that for sufficiently 
large ratio LimE I p.2 , the distribution function 
differs substantia~ly from a Gaussian one even 
at the end of the passage. The curve has a chW'
acteristic ''tail" at the low energy and a sharp 
cutoff on the high energy side. Its maximum is 
displaced in the direction of greater energies 
relative to its center of gravity ( y = 0 ). 

1L. D. Landau, J. Phys. USSR 8, 201 (1944). 
2 

I. Ia. Pomeranchuk, ]. Exptl. Theoret. Phys. 
(U.S.S.R.) 1_8, 759 (1948). 
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ROM ordinary hydrodynamics it is well known 
that an ''entrainment" of sound occurs in a 

moving fluid. A similar phenomenon must take 
place in the hydrodynamics of a superfluid. Inas
much as in the case of a superfluid two types of 
motion (normal, with a velocity v n , and superfluid, 
with a velocity v s ) as well as two types of sound 
vibrations, propagated with different velocities, 
are possible, it is natural that the picture of 
sound propagation in a moving superfluid liquid 
should differ from the corresponding phenomenon 
in classical hydrodynamics. 

Let sound oscillations of frequency w be propa
gated in a direction characterized by the unit 
vector n (along the x-axis) through helium II 
in which normal and superfluid motions are taking 
place with the constant velocities v n and v s • The 
wave vector k is equal to nw I u, where u is the 
velocity of sound. We shall determine here the 

velocitfes of first and second sound in the moving 
Helium II under the assumption that the motion 
proceeds at velocities which are small by com
parison with the velocity of sound. Let us write 
the complete set of hydrodynamic equations for 
Helium II: 

op + ct· · o j)f IV j = , 

Here p is the density, s is the entropy per unit 
mass, p is the pressure, j = PnV n + p s v s is the mass 
current density, p and p are the densities of 
the normal and superfluil components, and 

<1>=<11 0 (p,T)- Pn ( vn- v s) 2 I 2p is the thermo
dynamic potential, depending upon the relative 
velocity v n- v s. If we take the pressure and 
temperature as independent variables, then from 
the thermodynamic identity for the potential 

p d<D =- ps dT + dp + (j- pv ) d (v - v ) s n s 

it follows that the density p and the entropy s 
are functions of the relative velocity v - v . 

n s · 

iJ ( P n ) (a <I> ) S=so+ iJT "]p. (vn-Vs)2, So=- iJ; , 

1 (iJ<D0 ) 
.Po= 7fT p 

We shall look for increments linear in vn and v s 
to the velocity of sound for the stationary fluid. 
For this purpose it is necessary to rewrite the 
hydrodynamic equations to include terms quadratic 
in the velocity. We shall introduce the notation 
v = jl p and w = vn- v s· The components of 
these vectors in the direction of the wave vector 
k we shall identify by the index k, and those in a 
plane perpendicular to k by the index l . In a 
traveling sound wave, all quantities depend upon 


