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In the case of Sn, however, it is difficult to 
judge the degree of agreement between theory and 
experiment, since tin is misotropic and the 
quantity ~ is measured relative to an interphase 
boundary parallel to the tetrad axis 9, while o00 
refers to appolycrystal. Further, due to this 
anisotropy, one cannot assume that the possible 
errors in determining ~ by the method of Refs. 7 
and 9 will be the same for Al and Sn. In order to 
verify the theory on the present plan it will be 
necessary to make measurements of ~ (T) for a 
number of cubical metals. As regards the determina 
tion of the anisotropy of o0 and ~. this appears to 
be an independent and, moreover, extremely 
important problem (see Refs. 2 and 10). 

For Al and other cubic crystals it is necessary 
also to determine the dependence of the penetration 
depth upon the intensity of the magnetic field. For 
the case in which K « 1 and the penetration depth 
o 1 for a weak alternating field is measured in the 
presence of a strong external field H we have 1 •11 

(8) 

As follows from the numerical calculations for 
K ~ 0.4 and H = H , Eq. (8) is correct to within 

em 
15%, the true values for o 1 exceeding those ob-
tained from Eq. (8). If the penetrating depth o, 
and not 8 1, is measured directly for a strong field 
H, ( o - o 0 ) o 0 will be smaller by a factor of three 
than is indicated by Eq. (8). The temperature de­
dpenence for 5 1 and o can be seen from Eqs. (6) 
and (8). Using a variational method, Bardeen ob­
tained for o the expression (5.29) of Ref. 3, 
which for T -> T coincides with ours. (In Ref. 3 

e 
the quantity o is confused with the experimentally-
measured 12 quantity o, and in consequence the 
deviation from experiment by a factor of 2 to 3 
noted in Ref. 3 does not exist.) For T < T the e 
expression for o from Ref. 3 differs from that ob-
tained in a more accurate manner from Eq. (3) 1 • 

Here there is obtained from Eq. (3) an expression 
which differs fundamentally from Eq. (8); this 
might, in principle, permit one to choose between 
Eqs. (l) and (3) on the basis of experimental data [from 
Eq. (3) it follows that as T-> 0 the depth 5 1 

ceases to depend upon ll; this result is connected 
withthe fact that, according to Eq~ (3), in a state 
of equilibrium iJ2 F s 0ja'P2 -> oo as T -> 0] . 

* The limitations of Eq. (3) in this connection are 
evident from the fact that the expression (4) for H 

em 
leads to the relation c = aT3 for the electronic com­e 
ponent of the specific heat in the superconducting state. 

At the same tiine it follows, from both theoretical con-
'd . 5 d . f s1 erattons an , more Important, rom experimental 

data6 , that the dependence of ce upon Tis exponential, 
although at not too low temperatures Eq. (4) can be 

used for Hem as a good approximation. 

** The author wishes to exrcess his indebtedness to 
F. I. Strizhevskaia, who performed all of the numerical 
calculations with the aid of an electronic computer. 
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s OKOLOV et aP• 2 have derived general quantum 
theory dispersion fornmlas by the method of the 

density operator of the many electron theory. How­
ever, the authors have limited themselves to the 
visible and ultraviolet spectral ranges where the 
major role in light absorption is played by the 
quantum transitions of the electron system into 
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higher energy states. Meanwhile, it is not diffi­
cult to consider the absorption of infrared light 
bv the same method. Vonsovskii 3 has revie~ed the 
effect of oscillating electric field of low frequency 
on a system of coupled electrons in a crystal by 
the method of the density operator. However, 
since he did not take damping into account, he 
obtained only the expression for the polarization 
current, while the conduction current turned out to 
be zero. 

We can include the damping of the electron mo­
tion by replacing in the calculations the energy of 
the excited state E by the complex quantity 
E - ih r, where r is the damping factor. Using 
the wavefunction of a system of N interacting 
electrons in the form given by Sokolov 1 , it is not 
difficult to generalize the calculations to this 
case. We obtain the following expression for the 
dielectric constant f and the conductivity o: 

(l) 

where e is the electron charge, m is the electron 
mass, w the frequency of light and S* a tensor 
representing the effective/number of conduction 
electrons whose comprnents are 

(S\,,[3 = 1i~ (2) 

X~) (kIP (0) I k) a:iJ k I ;~/i[31 k )dk(oc, ~ = x, y, z). 

In this expression Vis the volume of the unit 
crystal cell, p (0) is the density matrix at the 
initial moment, ~Pi is an operator of the total 
momentum, and the index k represents all of the 
quantum numbers k 1, .•• , kN that determine the 
state of the system. 

If we discard in Eq. (l) the damping terms by 
setting I' = 0, we obtain the formula derived by 
Vonskovii 3 for the dielectric constant. In the 
case of noninteracting electrons, Eq. (2) becomes 
a corresponding expression of the one electron 
band theory. 

Thus, the dispersion formulas for the infrared 
spectral range have the same form in the many 
electron theory as in the one electron band theory 
of metals. The concept of an effective number of 
conduction electrons retains the same meaning in 
the many electron theory. flowever, the effective 
number of conduction electrons is determined by 
a density matrix of the entire system of the metal, 
and also by the matrix elements of the total 

momentum of the system. Therefore, a correct 
description of the optical properties of metals in 
the infrared spectral range should include the 
interactions between electrons. 

We note that Eq. (l) cannot be obtained by a 
simple substitution (V -> (V - i r in the expression 
for f given by Vonskovii 3 , because such a sub­
stitution has a meaning only for the natural fre­
quency of the system and not for the light 
freauencies. 

To determine the numerical values of S* it is 
necessary to apply the described scheme in 1any 
particular many electron model of a metal: That 
allows us then to solve the problem of the effect 
of the coupling of electrons ~among themselves on 
the value of the effective number of conduction 
electrons. 
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A COMPARISON of experimental data for elastic 
;>cattering of nucleons with energies from a 

few mev to a few tens of mev by nuclei 1-10 with 
the existing theoretical calculations11 • 12 shows that 
the differential cross section for elastic scattering 
qualitatively corresponds with the ''black body" 
model, but there is no quantitative agreement. 
Calculations based on the optical model with 

sharp boundaries for the potential well 13 give too 
large a value for the differential cross section for 
large angles as compared with the experimental 
data. Only the consideration of the diffuse 
boundary of the nucleus 14 gave results closer to 
the experimental ·data of the calculations for heavy 
nuclei. 

In the present work the elastic scattering of 
18.7 mev protons from the neighboring nuclei-


