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hypothesis of a decay-scheme of the hyperon: 
::£+--> 11 + + n fits best the observed values of the 
momentum, of the angle and of the ionization ratio 
pertaining to the primary and secondary particles. 
The observed half-life of the particle is also in 
good agreement with this hypothesis. For the 
energy of decay of the hyperon we get 

Q = (125:1 ;~) mev. 

Figure 2 shows the photograph of c~se 120.54: 
generation of V0-particles in a shower. Two types 

of neutral V-particles are known: the A 0 and e0-

particles. The analysis:>£ the decay-schemes of 
these particles [A 0 .... p + 11- and e0 .... 11 + + 11- ] 

has shown that, in the observed case, a A 0 -

particle decayed into a fast proton and a slow 
"--meson. In case 112.66 one also observes the 
decay of a V0 -particle formed on the beryllium 
plate. The positively charged secondary particle 
cannot be a proton because of the obse-rved values 
of the momentum and of the ionization. One must 
then assume that the decay follows the scheme 
e0 .... 11+ + 11- + 214 mev. In this case, the 
momentum of particle l must be equal to 6.3 X 108 

ev, which is in good agreement with the experi­
mental value. In all the observed cases the direc­
tion of the charged particle (which generated the 
V-particle on a De-nucleus) is known; hence, one 
can measure the angle cp between the plane of 
generation of the V-particle and the plane of its 
decay (see Table II). 

Table III shows the data on angles cp for all 
cases known in the literature of pair generation 
of hyperons and K-particles resulting from irradia­
tion of hydrogen by 11 -n1esons. 

For all 9 observed cases of formation of hyper­
ons in a 11 P interaction, the angle cpis such that 
q;:>: 40°; this indicates that hyperons have large 
~pins. At the same time, for hyperons formed on a 
Ue nucleus, we have cp.? 40 ° (Table II). This is 
probably due to the l3e nucleus (such as scattering 
of hyperons or their generation by secondary 
particles of the shower). 

The authors thank A.E. Chudakov for 
discussion of the results, K. A. Kotel'nikov, V. M. 
~:aksin,enko, C. V. Hiabikov for taking part in the 
study of the photographs, and also C. Fedorov for 
helping in the photometering of the tracks, 
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I N addition to the existing methods of description 
of collective interactions l- 4 we may consider 

another one based on the linearization of the liar­
tree equation near the solutions with constant 
density. 

In the equations 

(l) 

x~j ltJ!i (r') 12 dr'} lj!i (r) =0 

let us Tl'ake the substitution 

tjli (r, t) = V Pi (r, t) exp {- iSi (r, t) j 1i.}. 

This leads to the system of equations 

(2) 

X4:.J.Pi(r')dr'- 4- --- _t =0. "' Jt2{APi i (VP.)2} 
1 m Pi 2 Pi 

The form of these equations is identical to the 
fonn of the equations of irrotational motion of an 
ideal compressible fluid. The states of the system 
which are close to a constant space density of 
particles can be described by equations obtained 
by the linearization of equations (2) near the 
solutions, with p? =canst= p 0' s~ = E~t + S~(r); 
A cO o [ 'o . hi l . f h 1. h 1 • II • I..),Jj= mvi vi Is t eve ocity o t e }t partie em 

the state of a uniform space density of particles, E ~ 
= m ( v 0) 2/2] , 1 

I 
Let us look for the solutions P .S. of the linear-

ized ecpations in the form of a su~e~position of 
plane waves [ "' exp (ikr - iwt )]. The conditions 
of the solvability of homogeneous algebraic equa-
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tions for the amplitudes gives the dispersion rela­
tion 

1 = P 0k2 (G (k) I m) ~. [( w- kvj)2 -1i.2k' /4m2]-1, (3) 
I 

where G (k) is the Fourier component of the inter­
action potential G (r). 

Equation (3), whose solution gives the depend­
ence of w on k, coincides with the dispersion rela­
tion derived in Ref. 3 by another method. 

The advantage of the collective description of 
the interaction by Eas. (l) is that these equations 
permit the formulation of the limiting problem of an 
isolated system of interacting particles confined to 
a bounded region of space (in analogy to the limit­
ing problem of hydrodynamics of an ideal fluid). 

In particular, we can use F:qs. (l) to formulate 
the problem of free surface oscillations of heavy 
nuclei (given the potential of interacJ;ion between 
nucleon;). So far, we have not considered the 
effect of the symmetry of the wave function on 
Eq. (3). In the case of the Fermi statistics, when 
each fermion state is filled by two particles, i.e., 
the resulting spin is equal to zero, the Fart~ee-Fock 
equations (taking into account the antisymmetry 
of the wave function) differ from the Fartree Eq. (l) 
by the additional term 

which takes into account the exchange effect. 
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I N the macroscopic theory of superconductivity 
developed in Ref. l (see also Ref. 2, in which 

further pertinent works are cited), the free energy 
density for a superconductor in the absence of a 
magnetic field is taken to he 

where F n 0 is the free energy density in the normal 

state and I 'I' 12 is the concentration of "super­
conducting electrons". Further, ex. and f3 are coef­
ficients expressible in terms of the critical mag-
netic field for the bulk metal H and the weak 
field penetration depth 0 o= c m . 

(2) 

Equation (l) represents an expansion in powers 
. of I 'I' 12; in general, however, it is possibl~ to 
break off the expansion after the I 'P 14 term only 
in the immediate vicinity of the second-order 
phase transition under consideration, i.e., for 
T c - T << T c, where T c is the critical temperature. 
Under these conditions it is also possible to set 
ex.= (dcx./dT) (T- T ) and f3 =f3(T ), as was 

c c c 
done in Ref. l and subsequently. As we move 
away from T c and, in particular, as T-> 0 it be­
comes impossible to write an expression for Fs 0(T) 
based upon general considerations; on the 
other hand, it would be desirable to obtain even 
semi-empirical formulas which would permit com­
parison of theory with experiment for all 
temperatures. For this purpose Bardeen 3 adopted 
the expression: 

Fso (T) = Fno (T) (3) 

+ :; {(£ r (1-v1-l ~on-~ I fr} · 
('I' 0 being the equilibrium value of 'Pat T = 0) 
which is used in connection with the so-called 
two-fluid model foc a superconductoc. 4 The two-fluid 
mode I, however, meets with serious objections 2 •4 , 

and the use of Eq. (3) is actually based only upon 


