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The finite-dimensional representations of the rotation groups in four-dimensional pseudo-
Euclidian and Euclidean spaces are considered. The basis functions which are constructed
are eigenfunctions of the four-dimensional angular momentum operator. The Clebsch-Gordon
coefficients are calculated. Spinors which are eigenfunctions of the four-dimensional angular
momentum operator are determined. The possibility of separating variables in the relativistic

two-body problem is digcussed briefly.

1. STATEMENT OF THE PROBLEM
F OR the nonrelativistic description of the

bound state of a two-particle system we choose
as wave functions the basis functions of the
irreducible representations of the three-dimensional
rotation group. These functions are also the
eigenfunctions of the angular momentum operator.
By analogy with the three-dimensional case, we
can construct a system of eigenfunctions of the
four-dimensional angular momenta operator, which
form the basis for irreducible representations of
the Lorentz group, and try to use them for solv-
ing the equation of asystem of relativistic
particles.

If the relativistic e quation admits of analytic
continuation into the region of pure imaginary
values of the relative time, its solution is greatly
simplified. In this case one can use the basis
functions of the rotation group in Euclidean space.
The possibility of analytic continuation for the
relativistic two-body equation (equation of the

Bethe-Salpeter type ) was pointed out by Wick !,
The four-(Yimensional spherical functions of a

Euclidean space are well known, and were used by
Fock?2 for the solution of the problem of the
hydrogen atom in momentum representation. They
have the form

1, J+1
-1 .\ sin‘ed” ™ cos na
Yatm (x, 9, ¢)=1 Yim (99) M; d(cos oc)l'H » (1)

where «, 9, ¢are the angles describing the four-
dimensional radius vector, and

. s
My=1n?(n* —1%) ... (B? =),
n=0,1,2,...
These functions are eigenfunctions of the square
of the four-dimensional angular momentum oper-

ator L2(L? is the angular part of the d’Alembertian
operator)and can be used as basis functions.

The irreducible finite-dimensional representa-

tions of the group can be obtained fromthe irreducible repre-
sentations of the group of rotations of four-dimensional
Euclidean space by going over to pure imaginary
values of the angle «. If in Eq. (1) we simul-
taneously replace o by i o and n by in, where 0
< n <o, we get one of the infinite-dimensional
representations of the Lorentz group. The infinite-
dimensional representations were investigated in
general form by Gel’fand and Naimark3. A de-
tailed survey of the linear representations of the
Lorentz group is contained in a paper of Naimark*,
According to this work, the representations can be
classified by the assignment of two numbers %, c.
The number %, determines the smallest weight of
representation of the three-dimensional subgroup
which is contained in the (%, ¢) representation
of the Lorentz group. The explicit form of the
basis functions for one special case with £, <0
was obtained in a paper of Ginzburg and Tamm5,

Since we are interested in representations which
contain a scalar among the basis functions, we
shall consider the case of &, = 0.

In order to make use of the invariance of equa-

tions describing a system of relati vistic particles
with respect to the choice of the reference system
(i.e., with respect to Lorentz transformations ), we
must know the explicit form of the expansion of a
wave function in terms of irreducible representa-
tions (Clebsch-Gordan series ). The Clebsch-
Gordan coefficients for the three-dimensional
case are well known®. They are obtained for the
four-dimensional case in the present paper. If the
basis functions are chosen in the form of Eq. (1),
then the expansion turns out to be extremely

complicated. However, we can make use of the
fact that L2 and /2 commute with one another, and

take our basis functions to be linear combinations
of the ¢ , . Linear combinations for which the

Clebsch-Gordan expansion is particularly simple
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are obtained in a natural way, if we construct the
basis functions starting from the spinor representa-
tions of the four-dimensional rotation group. These
new basis functions prove to be suited for the
description of systems of relativistic particles.

2. THE MATRICES OF THE IRREDUCIBLE
REPRESENTATIONS OF THE FOUR-DIMENSIONAL
ROTATION GROUP

We first construct the finite-dimensional, ir-
reducible representations of the Lorentz group and
determine the coefficients inthe Clebsch-Gordan
expansion. A special feature of this case is the
need to consider timelike and spacelike functions
separately. If we replace o by i o, both of them
give equivalent representations of the Euclidean
group of four-dimensional rotations.

We introduce, in the four-dimensional pseudo-
Euclidean space, the coordinates

(2)
®3)

t = p cosh o, r = p sinh «for ¢2 —r2 >0,
t =p sinh o, r = p cosh afor r2 — ¢2 > 0.

The Lorentz transformation is a rotation of the
four-dimensional coordinate system in the pseudo-
Fuclidean space. Let ¢, {and ¢, ¢’ be the two
components of a spinor in the initial and rotated
coordinate systems, respectively. We denote the
complex-conjugate spinors by ¢, {, ¢, ¢”. In Ref.
7it is shown that the (2] + 1) (2j + 1) quantities

Wy = ((J 4+ M) (J — MO eertmes—m (4)

X [ + ) (j— p)) el

transform according to an irreducible representation
of the Lorentz group. We apply to u“;’ﬂ(on', ¥, @),

where o, 9/, ¢ are the “polar angles’” in the new
system, a four-dimensional rotation operator R,
which rotates the system back to its initial posi-
tion

Ruihy (', %, V) =ul (2,9, ¢)
= > Difun (9,

M s

(5)

0.8) witn (o, 9, ).

The coefficients D are the components of the

(27 + 1)(2j + 1)-dimensional matrix of the trans-
formation, / >M >~ J; j>pu>—j; 6 and ¢ are
the Euler angles of the three-dimensional rotation
(cf. Fig. 1). The rotation about the new position
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of the z axis (through the third Euler angle ) is

not of interest, since a point in space is determined
by a pair of angles. Tanh ¥/ = v is the velocity of
the new reference system. The z axis is chosen
along the direction of the velocity.

Under a four-dimensional rotation of the refer-
ence system, spinors transform according to the
law € = 8¢"— B{, { = —ye”+ " The quantities
a, B, y, & form a binary transformation matrix:

® = COS %exp {id — 9)/2};

B=—isin o exp {— (i -+ v)/2};

(6)

1= —isin exp {(ig + 1)/2);

8 = cos yexp{— (i — 1)/2}.

Upon substituting the explicit expressions (4) and
(6) in (5), we get

DHP-M'IL' (q), 8,0 — 1;,‘) (7)

J* kD j 4 14t
= Dy (— 5 0, '?) DL,.U‘ (— —i)i ,_6’ @)B(M + L

where D/ ( — 7/2, ¢, @ and D, » ( —n/2, 6, ¢ are the
matrices of the irreducible (21F+ 1) and (2 + 1) -
dimensional representations of the three-dimen-
sional rotation group:

Dy (1,9, 9)
= D (—1)
k

- 0 |2+ M—M'—2k ok M7
X elMY[COS?] [sin i]‘)k M Me.

®)

[T+ M (J — M) (T 4+ M) (T — M)
I+ M— R (M —MF R —M — )

Making use of the equality

. M 9)
Diin (1,0,9) = (—1)" D’ 1 01 (1,0, 0)
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and the Clebsch-Gordan expansion®
R (10)
J i ’
Dop—mDin = ) Cl%jrCi Dl
=[J—j|
we obtain
Dty s (‘P, B, 0 — %) (11)

— (_1)M—M’6(M’+P~’)¢

1

Im’ im l ™
X E C — M jut CJ—Mjp D (—7 , 0, ®>-
l

Ry using (10) and (11) we can get the Clebsch-
Gordan expansion for the matrices in the four-di-
mensional space

j Ll
D/."l'%uaﬁDAlYS

J+L 1

= 2 2

Ke=J—L] N=[j—I|

(12)
K Nv K N KN
Cimea Chutn Ciary Cigts Divse.
The orthogonality relations

ju . i'e o
2 C!x“-xlgu—”x Cil}hle*—ll-x = 0jj
By

(13)

enable us to obtain the expansion which is re-
ciprocal to (12):

KN
Dmcm (14)
. K Ny Ko No Ji Ll
= D CliuaClh CKoy CXs DYoo D L s
0,3
M, A v\

If the rotation ¢, 6, ¢ can be represented as two
successive rotations ¥, 6’ ¢"and ¥, 87, ¢,
then

Duarns (9,0, ) 15)

= 21 Dot (¥, 8, ¢") Db (07,07, 1.

»x, %

3. CONSTRUCTION OF RELATIVISTIC SPHERICAL
FUNCTIONS

In the four-dimensional pseudo-Fuclidean space,
we select an aggregate of functions ZJ (o, &, o)
which transform according to the (2] + ﬂ (2j + D=
dimensional representation of the Lorentz group,
and for which Z{l" (0,0, #/2) =& W According to
Eq. (11), such a 'choice is possib}fe. In view of (5),

210 271
Zuu=2Zy
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we obtain
Zﬁu (OL, %, "?) = 2 D‘/,V{p-hh ((Z, 3, CP —_ %) . (]-6)
13

If we substitute in (16) the expansion (11) and the

equality
T

Yim (92) = Y/ 252 (—1)" Dim (1, 9,9), 1D
where Y, (9, 0)is the three-dimensional spherical
function [Y, is here defined as in Ref. 8, and
differs by a factor (—~1)™ from the definition of ¥,
in, say, Ref. 9], we get:

Jj _ _ v—PR
2 (@, 9, 9) ; (—1) (18)

4
l/-zl _: 1 Cj”-n—M]'u Ylm (3(‘9) C}O_hjh ehre

It is known that the representations of the four-
dimensional rotation group are determined by a pair
of invariants, which can be constructed from the
components of the infinitesimal rotation operator.
If M is the space, and N the time part of the four-di-
mensional angular momentum operator J, then /2
=M? + N2 and M'N will be invariants. We con-
sider a Z-function which depends only on the coor-
dinates of the point and not on the spin variables.
The operators M and N which act on it do not con-
tain spin matrices and can be represented in the
form

M=1=—i[ny®],
_ 0 d t
N=g=n(tg+rg)+-v,

where n is a unit vector along r = nr, and V< is the
angular part of the gradient. Obviously g.1 =0. In
this case, the group representation is determined
(in the notation of Ref. 4), by assigning the pair of
nuHhers ko= —jl =0, ¢ =2/ + 1. The functions

transforms according to an irreducible
representation of the Lorentz group. It is an eigen-
function of L% = g2 + /2, and can be chosen as a
basis function. In the special case of J = % we
have

Z:/,Z 1, © coshg Lsinha cos ¥ (19)

Zi ), =sinhasin 9 e=i9;
ZZ@Z 1, =sinha sin {}ei@;

1/,
223, —y, =cosha —sinhx coS 9,
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i.e., the conponents Z;;‘ form a timelike four-
dimensional vector with components:

:kt —Z = pZi?l’__llz',
X — Ly = PZ:;:—I/,

t "*— z2= PZ:;: '/z-’
x+ iy =pZ s

(20)

The definition of the rotation angles in (6) so
that tanhty) = v, limits us to the case where t? —r?
>0. Therefore the ZJ function defined by (18) may
be called a timelike %—functlon

The connection between the spherical functions
of the form (1) and the Z-functions can be estab-
lished with the help of the relation

2J +1 I—J—h ok
(I.)nlmz“/z[+12(_l) C-’ hjhe .

!

(21)

__ sinh'a dl+1cosh nol
Ml d (cosh wfH ’

where n = 2J + 1. The validity of (21) can be
checked by expanding the rlght side in series and

comparmg with the expansmn of the left side. By
using (21), we put ZJ in the form
Vix (22)

ZJM" = 2_]+ 1 Z V2l + 1 Clpl-—m q)nlm

If in (21) we replace a by io, then the right side
coincides with (1), so the expression (22) will de-
termine the Z-function for a Euclidean space.

If we rotate through #/2 in the (z,t) plane of the
Euclidean space, a vector which became timelike
when we replaced o by -io,will become spacelike.
This enables us to construct spacelike basis func-
tions of a finite-dimensional representation of the
Lorentz group. Again, they will have the form (22),

but now we must choose for ¢, ;,,, not (21), but
rather

Vi se

_ 23
1)/ CI 0 e (23)

1 d"lcosn (l'fl + %)

i cosh
M,

d (sinh o)1

The factor (_1)Jhas been inserted in (23) so that

the Z-function will be real for arbitrary /. In analogy

to(19), the components of the spacelike Z” form a
spacelike four-vector. The relations (2) remain
valid, but we must use (3) for «, y, z, ¢ instead of
(2).According to (12) and (16), the expansion
JiL
ZiZhy = Y COmi" CHE
N=J—L|

N .
LM+, v4+25(24)
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N NM+A AN J oL
ZMAN, pfr = _S_‘J CIMLR CA Zg, 7%,.(25)

M, A, p A

exists for timelike Z-functions. The expansion
(24) is valid for spacelike Z-functions, except that
we must add a factor (<1)" ~/~% on the right. This
factor appears because we have introduced (—1)7
in defining the functions.

By using (22) and (24), we obtain

4, = I M 1 (26)
D, 1,m, Ynylomy, = leMljzju lep.lj,,Jz (,JT_MJFL
Cllml Clzmz 1 .
Ji—Mypy CTo—MyJqpy Y1lm;
ni=2J/;+4 1.

The summation runs over J, I, M, M,, p), pys5 it
can be partially carried out using the Wigner 9-f
symbols:

l‘pnx Lim, ﬂz lymy, =

Z ( I)J—-J,~Jz Cllmllzmz (27)

x (N loty; Ly, T, J) b

inim,

where ¥ is related!? to the 9—j symbols and is
a complicated function of T Tg by Ly, T
Comparison of (24) and (26), %27) shows that for
problems where we have to use the expansion in
irreducible representations, it is more convenient
to choose the Zl{lu as basis functions, and not
oim®
nélfferentlatlon of the Z-function can be carried
out, using (22 and the explicit form of Yot How-
ever, this does not enable us dlrectly to get the re-
sult in the form of an expansion in terms of irredu-
cible representations (i.e., in terms of Z-functions).
Such an expansion is frequently needed, and can be
gotten as follows. We shall agree to denote the co-
variant components of the gradient by the symbol
d_p, where = and S refer to the component Z;/’
which transforms like the associated differential op-
erator

ai’/z, +. = 6‘/01f F Vo (28)

5:;:'/3, T+, = _TVivih

where V, V., V_, are the cyclic components of V.

The cyclic components of a vector a are related to

its Cartesian components by the relations a; = a,,
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ay, = iZ'%(ax tia, ). The contravariant com-
ponents of the gradient are =B = (~1)=+B+1
X 6__«__3 .

Making use of the transformation law for G“B

and the e quality (24), we get

0ag Gy (p) Zaty (29)
=N A5 (o) CH CHAR Zhta, vt
l

where G(p) depends only on p, and 4, (p) is a
quantity which can be found by starting from the

explicit form of the operator B“B-
If t2 —r2>0, then

" P)
0y 11, = ZL, 111, % (30)

J— i [sinh o *cosh U.cos%] -

w
— [u j_cosh 0.56—— — ,V;l ] .
e o sinh 0L
If r2 — t2>0, then
1 0 31
Oy w11y = — Za¥y, 12 57 B1)

1 0
- — fcosh & tsinh ¢ cos §] — T= L0
_l P[ ° ’U] oo —TPCOS}I(X

~

- l/
017, = O,y = — 275,

V2| i
s [nlsmh 0(50?

o
2 W

vy }
“cosha |°

In eqs. (30) and (31), n, = 2% sin 9ei @

1
!

-,

In order to go the case of a Euclidean space (with
coordinates r = Rsin o and 7= it = R cos o), we need

only change oto iocand p to —iR in (30).

Since the coefficient of d/dp in d_p is Z,,/:B, the
equalities (24) and (29) enable us to present A”(p)
‘in the form

G a
As(p) = _JC[ 39(9) — By, _LP(L)] (32)

where B, does not depend on p; the *signs
apply to the cases t2 — r2 >0, and 2 — r%<0,
respectively; B, is the same for both ¢2 — r2
20. In order to determine B ;> we integrate both

sides of (29) over the angles®, g.and use (30) or
(31). If we then compare terms on right and left,
we get

By = 2% (2] — 2« + 1), (33)

lzj-—,-%, x:-—l_—l/2.

Performing the operation (29) twice gives

L2Zh =4 (J + 1) Zip, (34)

where, for the case of 2 ;2 >0,

a2 0 [
2 — o - 35
L 6a2+26 ”’“aa sh?a’ (85)
92 s 0% 3 9 L2
o v 92 " o dp p%’
while for r2 — 2 >0,
s 02 d [
L =5 Formne 5o+ oo (36)

., 02 9r 3 9 L2
Vi—on =g o

The Lorentz group is noncompact, and its

total volume is infinite, so that it is impossible to
carry out the operation of group integration using
only finite-dimensional representations. It is
therefore impossible to pose the question of ortho-
gonality of Z-functions in pseudo-Fuclidean space.
In Euclidean space, the Z-functions are orthonormal:

3 ki 21
gdoc S dé}ﬁ dosin?o sin 923, Zj, = 2% (37)
PR

0

5 2/ +1

This enables us to expand an arbitrary function

of coordinates in series in terms of the A For
example, we have for exp (ikx) K

eihy — 2 (2 + 1) (—1) (38)

J M.

x Ry (ko) Zity (B99) Zip (193),

or
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(39)
ety — 2 4m(—1 )jRJ (Rp) q)l‘zlm (.8643) Prim ('xs(?)y

Jim

Ry (kp) = (2/kp) Jos 41 (Kp),

where ]n(kp) is a Bessel function, & and x are
vectors in the four-dimensional Euclidean space
whose directions are defined by the angles 3, 6, ¢
and o, 9, @ kx = |k|p cos w;

: . : o 0
cosw = cos Bcosa + sin Bsinacosy; (40)

cos = COSBCOS% —|— sin 6 sin 9 cos (“P - ¢)’

(oo 5 oo — Lot B Ry (k) Zine (332) = 0.

The Z] functions play the same role in four-di-
mensmn’él space as do the ¥, in three-space.

If we Cal'l}’ out the transformation o -» - o or
r->—ronZ (o, 9, q) then according to (18), for
the case tiu-—r >0

Zify(—, 9, 9) a1)
= (=12 Zi (@, m — 9, 7 4 @)

=(—1 )u—MZJ—jJ.W—p (o, ¥, @),

and for the case ¢2 — r2 <0,

Zaf (—a, 9, ©) 42)

= (—])J-i—l'Z/jy;ij (@, = — 9, =+ o)\

=(—D"Z (@, 9, 9).

4. CONSTRUCTION OF RELATIVISTIC
SPHERICAL SPINOR AND VECTOR FUNCTIONS.

If Y XX transforms according to the irreducible
(2K +1) (2N + 1)-dimensional representation of
the four-dimensional rotation group in Euclidean
or pseudo-Euclidean space, then according to (12)
we have the expansion

DKN Z Ciiiia C,mq) s Ui (43)

M, A,

ck
Mp -‘)A)\ = 2 Cimra C]pl}‘ ‘Paﬁ

For the case L =0and [ =%,/ =0and L = %,

the functions l//k)\ become ordinary contravariant

or covariant SDII\OI‘S.

%ol (9) = Bor, Yo (3) = (— )" 3 gs. (44)

Substituting ZJ ¢°/’ for l/l".(/lLl in (43), we

form a contravarlant spherical spinor function
PM)\’ consisting of a pair of components (o
=+%)

[PMJ\]c = 1/2-1 +1 (—1) Ju—ul/zc Z/Juy_. (45)

The factor 2/ + 1 (= 1) is included in (45) to
make the use oqus.(462 and (47) more conveni ent.
If we substitute gb{’go in (43), we get a co-
. This func-

tion is conveniently chosen so that the following
equations are valid:

variant spherical spinor function Iil”

[ a‘z o.v] G,.PlL (46)
oa )
=i [Wﬂ — 2x 21—:—_‘:—1— sz] Ria;
9 .
[W + G'V] G Ry (47)
— .[9G,; 20 4 2% 4 1
~F T e e ap

(where [ =] + »).

The transition to a Fuclidean space is made in
the same way as for Eq. (30).

With the help of (29) it is not difficult to verify
that

1)l+c—l/,CJM A (4-8)

IAY,—0 Z AA-

[RM}\]c V2l + 1 (‘_

We shall show that the bispinor ¢/ Amade up

of R“ and PJA , is an elgenfunctlon of the total

four—dlmensxonal angular momentum J of a particle
with spin %. If ¢(r, ¢) is the wave function of
such a particle, then the operation of infinitesimal
rotation gives
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Y (r +or, £ + 38 (49)

= {1+ [t + 4 on] = [g— T o]} e,

where 8 is the infinitesimal angle of the three-

dimensional rotation, —5)0 is the infinitefimal

velocity of the new reference system, o, and
opare the Dirac matrix vectors. We shall use

the representation of the Dirac matrices in which
yS is dlagonal In this representation J2-12

+ (l-oD ) - (g.uD) + 3/2 breaks up into two two-

row matrices situated along the diagonal. Their
eigenvalues are identical:
Sl — [4]1 19+ 20 + ] ol (50)

Along with the spherical spinor functions, it is
possible, by using (43), to introduce the concept
of four-dimensional spherical vector functions.
We shall define the contravariant and covariant
spherical vectors by the relations:

I e 7.
[Zyn ] = ijo o400 Z M (51)

[ZA[A]U‘UZ = (—1)°+1C1M1_0 Cll;’zcxl/zoz Zﬁ,r,, (52)

Formulas (51) and (52) are a generalization of
the definition !l of spherical vectors to the four-
dimensional case.

5. AN EXAMPLE OF THE USE OF THE Z-FUNCTION
FOR SEPARATING VARIABLES IN A RELATIVISTIC

EQUATION

As an example of the use of the relativistic
spherical functions, we shall consider the problem
of separation of variables in the Bethe-Salpeter
equation for the case of a bound state of two scalar

particles. This equation can be expressed in the
form
(01— £2) (O — 12) (X1, X3) (53)

= i(X1x2x3x4) b (X35 X4),

where  is an integral operator. We shall denote
by D and 9 the operators of differentiation with
respect to the coordinates of the center of mass
of the system X = (x . x,)/2 and with respect to

For (53), we

the relative coordinates x =x, — x,.

get

e D+ 1/, D%0* + 0t (54)

T 2 pPD? —2020% 4 pt — (D)} 4 (X, x)

=1(X, x, V,9)9(Y, ).

Making use of Wick’s! observation concerning
the possibility of analytic continuation of the
Bethe-Salpeter equation, we shall solve the prob-
lem in four-dimensional Euclidean space. We
shall represent the wave function of a state
in which the four-dimensional angular momentum
of the total system has a definite value (the
operator J 2 is diagonal) in the form

NS __ o (55)
fM}L - 2 gL R p)lMp, (L, l)’
Ll
J
PMu (L, D)
L
= D Cifu, Clhn, Zia, (B00) Z5 o, (a93),
AhBDoAs

where [ is the relative angular momentum of the
two particles; L is the angular momentum of the
center of inertiarelative tothe origin of coordinates;
R, 0 ¢dand p, v, 3, ¢ are the polar coordin-
ates of X and x; ng(R p) is the “radial” part

of the wave function. Substituting (55) in (54), we
take Fourier components with respect to the
coordinate X. We then get an equation analogous
to (54), in which D is replaced by the total
momentum P of the system, and where

GLI(P p)ZA A, (B , ep, qu)appears in {55) in
place of ng(R p)ZA A, (B, 0, ) B, 6, ¢,

are the angles of the momentum 4-vector.

The presence of the term ( Pd)? makes the
equation noninvariant with respect to four-
dimensional rotations in the space of the rela-

e e . . . 9
tivistic coordinates. Applying (P 3)° to lﬁ}{l#

gives
(P0)2 ".J}Itzt}; = PzzzBﬁt d:){Wp. (L+n, I4+k) (56)
Ll nk
9 [ 3—20QLtk+1) 0 AULED 1 op)]
(i s wtbog gy
X Gii (P, p),
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where n, £ = 0, +1; the coefficient Bnlj,cl contains

all the factors which depend only on L, [, n, k.
Bf,f can be expressed rather simply if we make

use of Racah’s formulal? for the summation of
Clebsch-Gordan coefficients.
Since the ﬁ(L,l) are eigenfunctions of 92,

and since, the coordinate x appears in th integral
operator [ only in an exponential factor we can,
by using the orthogonality of the Z-functions, ob-
tain an infinite system of coupled equations de-
pending on a single parameter p, for determining
Gil(P’ p). In certain cases this system may

prove to be more convenient than the initial
equation (53).

Problems of separation of variables in relativistic
two-body equations and possible methods for their
solution will be considered in more detail in a
separate paper.

I express my thanks to K. A. Ter-Martirosian
for discussion of the questions touched upon here.
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