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The interaction energy of two charges located in an ionic crystal is calculated in a macro-
scopic way. The ions are considered fixed at the lattice points; only the noninertial polariza-
tion component of the crystal is taken into-account. Theresult depends on the sign of the
charges and for large separations the interaction is of the Coulomb type. If the charges
are localized on neighboring ions, the result differs in the mean from the Coulomb energy
by 17-20%. The polarization energy of the crystal due to the field of a point charge located
at one of the lattice points is calculated in this same approximation for KCI.

I N the works of Pekar and his colleagues®-3
on the investigation of the local states of the

electron in ionic crystals, consideration of the
polarization of the crystal in the field of a point
charge or ionic vacancy (at an F-center) plays a
great role. A macroscopic expression for the
electronic polarization! is determined with the
help of the coefficient C = (1/n2) = 1/e which ap-
pears as the basic parameter of the theory. Since
the results are subsequently applied to states with
effective radii comparable with the lattice constant
or even equal to it, there is interest in an estimate
of the admissibility of such a method. Thisis the
more essential, that the basic contribution in the
polarizing field is made precisely by the near
ions, to the determination of the polarization of
which the macroscopic method is less applicable.

The author, on the suggestion of K. B. Tolpygo,
has considered the problem of the electrostatic
interaction energy of two charges which are lo-
cated in a crystal, and its dependence on the
distance between them. The ions are assumed to
be fixed at the lattice points ( noninertial
pdarization). The calculations are carried out
by a macroscopic method. The extra electron
(or hole ), in accordance with the chosen approxi-
maion, is considered to be localized onthe ions
of corresponding sign.

Mott and Littleton?, and also DuPre and others®
have computed the work of noninertial polarization,
performed in transporting a point charge into the
ionic crystal, and also the potential which arises
at the point where the charge is located. These
authors have shown the great role of these quanti-
ties in the theory of electrolytic conductivity5,
absorption spectra, color centers and electron
emission. However, the method of successive ap-
proximations of Mott and Littleton is not success-
ful in our case. Results computed with accuracy
to 10th order do not permit us to determine the
limit to which they converge.

In the present work, there is given another,
completely independent method for the determina-

tion of the above-mentioned quantities, which

can also be applied to the calculation of the

dipole moments of the ions of the polarized

crystal. For numerical calculation, the crystal

KCl was chosen, for which all the necessary param-
eters are known, and which is frequently employed
in experimental researches.

1. ARRANGEMENT OF THE PROBLEM AND METHOD
OF CALCULATION

We introduce two point charges g, and g, in the

ionic crystal; as aresult, the crystal is polarized.
Iftheions are fixed at the lattice points then only
non inertial polarization results, which is con-
nected with deformations of the electron shells
of the ions and with the appearance of the elec-
tric field £ of the polarized ions.

The dipole moment p_of an ion of type s located
in the lth cell of the crystal can be represented
approximately as the sum

pé = p{s + pés (1)

of the dipole moments associated with the charges
9, and g, separately. We represent the field

similarly:

E (r) = E; (r) + E, (r). (2)

The total electrostatic energy U of the crystal
as a function of the distance R between the
charges 9, and gq,, with consideration of Egs. (1)

and (2), will be equal to

UR)= U+ U,+ U.s(R), (3)

where

U= 33 {“;’) —pl,[FE ) + f’—,i]} @

1s

is the characteristic energy of the charge q; (the
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T1s
is the interaction energy of charges ¢, and ¢,,
o = polarizability of the ion of type s; for the

vector notation, see Fig. 1. Summation in [ is
carried out over all cells of the fundamental region
of the crystal, the number of which we set equal
to M. The aim of the present work is the calcula-
tion of the energies of Eqgs. (4) and (5).

For further calculations, we expand all quanti-
ties in Fourier series:

! _ e[y -
p! ;ps,kew {ikrl}; ©)
E(rl) = 2 E . exp {ikré};
k

%3 rl= Zps’kexp {ikrl}.
s Kk
Fvidently*,
p; = [E (ri) -+ ;%ré] . 7)

It also follows from Eqs (5) and (7) that
Pose =, [E,  + 0o (®)
* This same relation was proved in Ref. 6 by consider-

ing the crystal as a polyelectron problem in the approxi-
mation of Heitler-London-Heisenberg.
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Substituting Eq. (6) in Egs. (4) and (5), and con-
sidering that

R ol
2 el(k+k )l‘s — Mak, e (9)
L
we find U and U, ,, expanded in Fourier series.

>
2. DETERMINATION OF THE FIELD E AND p

The field created by the dipole plane wave

p! = p, exp [ikr! — iwt],

was represented by Fwald? in the form of two
rapidly converging series which we write out here

in view of the presence of a misprint in Bef. 7.

The kth component of the field E in Eq. (6) is

Ex = grad div By — gg—‘jék, (10)

where SBk is the Hertz vector®:

R
%kﬂ-é’ t)=22—‘l_p_il£m

s’ Irs

(11)

X exp {L‘m (t - % |rt—r I) + ikrﬁﬁ}

) ik - ikr.s
= eiot (Mo p  Si(rl—r)+ e S L1}
Here

SESk(l‘)ZZ 1

1 l rll—l"l (12)

X exp {i?lr — ¥ | 4-1kr’},

and S, differs from S by the absence of 4 term
with [ = 1. Fwald transformed S and S into
the rapidly converging series:

2 (13)

S(r) ==

° 2

K
X Ze“"lg exp {——|r——r’|2x2+4—°2}dx
1 s x

exp {— (K} —K2)/ 4e? + i (K1)}
7 K} — K}

where the following notation is used: K = w/c,
K; = 2ah; + k, h, is the arbitrary vector of the

inverse lattice;
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R

. Kolr—rt
Si() = S () — ¢ Ll=TD (14) ®(x) = 2 e at.
0

1 {eik‘,lr_rll @(Ir—r’|e+ l_K")

2r—r]| € The result is independent of the choice of ¢,

A = d®/4 is the volume of the elementary cell.

el iKo After substitution of Eq. (13) and (14) in Eq.
+ ikl @ (l r—rtfe —_s—)} ’ (11), and the result in Eq. (10), we find the com-
ponents of the expansion of the field E in a
® = proability integral: Fourier series in the wave numbers k:

Ek(r1)=e‘i“”+ik’§ 4 3p —L_p Zqo 2 L pl (242 | ferplt ol
s Ve s Ty Ps Sx exp {—|rt —r" x4 ik [r" —r!]} dx

Ukl

+ V.—i_ , (ps [r! —r¥]) (rt —r¥) g xtexp{—|r'—r"Px®+ ik (r'—r!)} dx

Vel

— 7 X {— (K} — K7) [ 4e?}

_dn 5 0 KeKy
A lr K%/ — Kﬁ

4 . ' ¢ ’
— =P ;} exp {Z (k[rl, —rl])} S xPexp{—|rl—rlFx% dx (15)

o]

+ VS; (P Irl — 1) (t — ry) S xtexp{—x?[rl—rlP+ik(rl —rh}dx
v p

4 , JK) K,

— —ATL lZexp {— (Ki — K3) [ 4s* + iq,, (r, — 1)} Po Kp) Ky

K} —K{

4 02 (Ps+Pg) 2
T g P (— (e — KD/
If, in accordance with the above, we set in Ref. 8 only for eight points of k, which is
€ =\/2m/d, the lattice vectors a,=(d/2)j+k), quite insufficient for further calculations. There-

a, = (d/2)(i +k), a, =(d/2)(i +j), choose the fore, the author has again calculated the matrix

origin of the coordinates in ion K*, and the radius (Dk for 29 values of the wave vector k, which
vectors r_ and r_equal tor, =0, r, = (d/2) makes possible the calculation of the field E;

x (i +j +k),then, substituting these in Eq. (15), and the dipole moments P,y at 729 points of the

we obtain the expansion coefficients of E in the cell of the inverse lattice. The results are given
Fourier series in k: in Table I.

Ex = a7 Oy Py — 843 Oy Py, (16) The Fourier components Z(i),k of the fie%d of a

: point charge localized on the ion of type j in the
where @ is a symmetric matrix of 6th order with place where an ion of type s is located are con-
elements ® and E, and P, are six-dimensional sidered in similar fashion. Since this calculation
has not been performed earlier, we carry it out in
some detail.

x = %,y, z) which are .the totality of two corre- We obtain from Eq. (6) the kth coeeficient of the
sponding three-dimensional vectors of the field and  ggpjes expansion of the field of the point charge

the dipole moment, which correspond to the two q in the usual way. For convenience we tempor-

types of ions. ) arily set ¢ at an arbitrary point r (not at a lattice
The elements of the matrix Cl)k were considered point ). Then

’
ssxy

vectors with components Ek” and p, . (s =1,2;
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1 =0 el
P(r) Z_MZT'_‘(? TRE;

I lr] —7r ]3 (17)

—'Lkrl'

_ l_ —1kr1 \v/
M D
But the latter, according to Eq. (12) is equal to

% e-ikrf VS (l' — l'i)

for Ko=0 (for a static field). Thence, we ob-
tain
exp {—ikr;} -
Pl =9 —3—— VS(@r—r), (18)
- ex ikr:}
P,:k—‘q p{ 1 VS(I‘—I',‘),

where the upper index refers to the type of ion on
which the charge g is placed and the lower, as
usual, denotes the type of ion for which the field
is calculated. Carrying out the indicated opera-
tions, we get

—)_' q 4
o= = (19)
X Z{rl -I—- f]‘ ‘B”r exp {-‘-— i krl - l krl @]1'}

1

X S x?exp {—— et Bl 2x2} dx
K, .
zl]—% {— K2/4e® -+ iq;r; Bii'}}’

where Bii r=1- 8].].

the reciprocal lattice, K,

*, q; is the arbitrary vector of
= q; +k. As already

noted above, ¢ is a.rbltrary, here we set €

=V 27/d. The series in Eq. (19) converge
rapidly. The charge q was located at the origin
of the coordinate system. If the same ¢ were lo-
cated at a point R, then (see Fig. 1) the entire
expression (18) would be multiplied by e‘kR*,

It is also easy to see that the case of holes
differs from that of the excess electron b?' a change
of or(l)e(rlz)ind al_f(oz)of the signs for p p;: p1k _—péi)
and plop =-piy -

. We replace pjy by the dimensi onless quantity
¥, - Then, setting the origin of the coordinates

on the ion at which the charge is localized, we
get:

* All the Pjj e multiplied by the same factor, which
follows from the linearity of Egs. (8) and (16).

T. 1. LIBERBERG-KUCHER

1) Field of the extra electron:

oy = (8ie/ Md?) ¥y, (20)
2) Field of the hole:
ij = — (8i6/Md2)\ipj’k, (21)

where e is the electronic charge.
The value of W for the 29 values of k were
computed by the author and appear in Table II.

3. FOURIER COMPONENTS OF THE IONIC DIPOLE
MOMENTS AND THE ENERGY OF THE CHARGES

Substituting Eq. (16) in Eq. (8), we get a system
of six equations for the determination of the
Fourier coefficients of the dlpole moments p, of

the ions in the external field p .In the resultant
equations, it is appropriate to transform to the
dimensionless quantities Tik and A4;, writing

= (led [ M) =, (22)
and
o =(@/8)4; (j=12).
For KCl: 4, = 0.02569 and 4, = 0.1087.

Substituting Pik and o from Eq. (22) in our set

of equations, we finally get

Ck ';;k = — ‘i"k (extra electron) (23)

Ck ;I"k = {ij'k (hole)
where C. is a 6th order matrix which differs from
(Dk only in the diagonal elements:

- Css’xy = cPs.g’xy _ (I /As) SSS; Bxy (24)

(s=1,2; x=x,9, 2),

- 3 . . . . .
m and ‘Pk are six-dimensional (dimensionless)
vectors.

For the determination of the dipole moments pe
the inverse matrices C-! were found by the author
for 28 values of the wave vector k. Their values
are listed in Table III.

For long waves (limiting case k » 0), the
vectors pk and the matrix @ were expanded in a

series in k by Tolpygo. The 7rk were determined
by him for small k. With accuracy up to terms of
order k2, inclusively.
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TABLE II. The vectors ‘I; - 104

5
Here % is the nondimensional wave vector

k = 27 (3¢ by 4 %3 by + %3b3) = (27 / d) ;’ (27)

.where b,, b, and b, are the vectors of the re-

ciprocal lattice of the crystal; 4 =4, +4,. The

interval of variation of the components of % runs

from

-~ Y% to +%.

In the entire work the points of k

are designated by (1, %y, n3) or (x,, %, %, )

The expansion was carried out for the points
%(1/8,1/8, 1/8) and %(1/4, 1/4,1/4). The devia-

tion from the computed point values did not exceed

2%.

Ne Yix iy ¥z Yox Yoy Yoz
1 0 0 —37065 0 0 —39138
2 0 0 —14470 0 0 —17451
3 5613 0 0 — 7756 0 0
4 0 0 0 0 0 0
5 0 —17042 —17042 0 —19341 —19341
6 0 — 5024 —10483 0 — 7901 ‘—13809
7 0 — 1192 — 4466 0 — 4696 — 6873
8 0 — 235 0 0 — 4015 0
9 0 — 4569 — 4569 0 — 8790 — 8790
10 2196 1086 0 — 5299 — 6301 0
11 0 0 0 0 — 5658 0
12 —25165 —25165 —25165 —26345 —26345 —26345
13 —10308 —10308 —10308 —12909 —12909 —12909
14 — 4222 — 4222 — 4222 — 8828 — 8828 — 8828
15 0 0 0 — 7749 — 7749 — 7749
16 — 5738 — 5738 —17515 — 7162 — 7162 —20408
17 — 1426 — 1426 — 8188 — 3224 — 3224 —11145
18 — 210 — 210 — 2367 — 2295 — 2346 — 3612
19 — 2554 — 8277 — 8277 — 4373 —11804 —11804
20 — 469 — 2534 — 4912 — 2925 — 7050 — 8574
21 448 — 208 — 1498 — 2524 — 5498 — 3058
22 — 456 — 436 — 2533 ~— 6888 — 6888 — 7495
23 703 — 1599 — 1599 — 2881 — 6394 — 6394
24 — 3495 — 3495 — 7749 — 6892 — 6892 —11355
25 — 459 — 459 — 3476 — 4759 — 4759 — 6266
26 409 409 0 — 4301 — 4301 0
27 — 745 — 3149 — 3149 — 9591 — 8257 — 8257
28 1384 0 — 1384 — 95248 — 6657 — 5248
A; = 2r = = . .
= m ¥ — = A; (¥, — ) (25) The dipole moments of all ions can now be cal-
—2md /. 3 culated atwill by simple summation of the
A . Fourier series of the three variables.
— 2m 4%+ 4, %] = " In Sec. 1 we obtained F.gs. (4) and (5) for the
1+4nA/3 22 ! energy of the charges in the crystal. We sub-
. - . stitute p and § in them. It is easy toshow that
¥, = — 2 41,200, (96y  all the coefficients E, , p, and ﬁk are odd in k,
2
x i.e., they change sign upon replacement of k by
* I . -k. Keeping this in mind, we obtain, after sub-
Y, = —= + 0,295 x. stitution of Egs. (23), (19)-(21) and (16) in the
X

expression for U, U, and U, , and some simple
transformations:
1) Eigenvalue of the energy of each charge te:
4e2 - =
U= — 317 2 (%, 1« o, w); (28)
s kR

2) Interaction energy of the two charges (g =e

= electronic charge ):
a) of the same kind

U2 (Ry2)= U, (R) (29)

_ e _ 8
=R M

Zcos (kR) 2 (;;s, k ‘i’s, k)i
k s
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b) of opposite kind
2 2
Uz (R) = — 4 —4&—01;(:03 (kR)  (30)

X 2 {(;e, s, k lifq, s, k) + (—';ctl, s, k \.I}e, s, k)},

where the indices g and e refer, respectively, to
the hole and to the electron.

In the expression for the energy (29) and (39)
there occurs summation over the wave vector k or,
what amounts tothe same thing, over the non-
dimensional wave vector % . The summation is

carried out over the interval », = +J4, in which it

has N = MY3 values: %, =0; i‘ 1/N; £2/N;.
+%. In v1ew of the large value of N, the summa-
tion over  can be replaced by integration over
dx,, dnydn,. The integral can be computed by

any approximation method. We made use of Simp-
son’s rule.

4. RESULTS OF THE CALCULATION

In view of the tedious nature of the calculation,
all the quantities have been found for the minimal
R--closest approach of the charges. Like
charges are placed on neighboring like ions, with
\R | =lag|= 2-%d; unlike charges on nelghbormg
ions w1th |R| =d/2. The results are given in
Table IV.

Mott* has computed the potential of the field
created at the point when the point charge ¢ is
located in the crystal polarized by it, and DuPre®

gave the energy U_ of the charge g in this field.
As would also bé expected, on the basis of

Egs. (21) and (22):
Ug=4qV,= —qE(p

s, l s

A l
:) 31)

8e? = -
—Md ('Ws, k ‘Fs, k),

s, k

ll

» U, differs only by the coefficient 2 from the
elgen energy (28) in the case q = te.
The eigen energy (28) was computed, as also
U, .- and the results obtained for d = 6.27 x 10" -8
cmare given in Table V.
Correspondingly, the potential V_ is expressed
by the nondimensional quantity V /qV for the case

=(q/4nd)(1-1n"2) is equal to

|4 16r NN - 7 (
o . ). (32
Vo = T—n2 %T'(ﬂs'k For)

If we set n~2 = 0.4600 (for KC1), then we get
the results of Table VI. It is easy to verify that,
when the charges are entirely separated (R - ),
we get the Coulomb expression

U x(R) = e/ Rn?.

The author considers it his pleasant duty to
express his gratitude to K. B. Tolpygo for sug-
gesting the theme and for his lively interest in
the work.

TABLE IV. Interaction energy U1,2(R)

Interaction Energy

i its of in % of
S
Electron-electron . . . . . . 0.512 1,665 111
Electron-hole . . . . .. —8;28 —%?gg }?(7)
Hole-hole . . . . . .. . .
Coulomb’s law * = = + + - -+ 0.460 1.469 100
TaBLE V. Eigenenergy
according According to the Author
Charges toMott, T - - .
inev cgs units ] in ev
Electron . . . . . . . —2.02 —0,2090(4 e?/d) | —1.922
Hole - - « . « o . —1.44 —0.1470(4e?/d) | —1.325
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TABLE VI. Potential (in arbitrary units)

According to DuPre et al.

' According

Charges macro- first second | third to
scopic approxi- | approxi- | approxi- |ihe Author
mation mation mation
Electron 18.96 20.60 20.44 20,27 19.45
Hole — —14,69 — — —13.69
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