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f The possib~e application of s.ingular integral equation theory to the calculation 
o the ~cattermg phases of particles in an extecnal field is given. The case of 
scattenng by a 8-potential is considered as an example. 
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I T has been shown in a series of cases relating 
the scattering of particles in an external field, 

for example, the scattering of electrons by heavy 
nuclei, that, on the one hand, the Born approxi
mation for the external field is quite inadequate, 

problems in which there are only diverging waves 
in the final state, we shall look for the solution in 
the form 

and on the other hand, radiation corrections do not 
yet exist. For phase calculations in this case, one 
must use numerical integration of the differential 
equation for the wave function of the scattered par
ticles. However, determination of the phases by 
this method requires a great deal of work on very 
accurate calculation of the wave functions for a con
siderable distance from the scatterer, and the com
putation must be repeated for each value of the mo
mentum and energy of the particles. Much simpler 
calculations are obtained by application of the 
method of Drukarev 1, where an auxiliary function 
approaches the phase monotonically. However, 
even in this case, the calculation must be repeated 
for each value of the energy and momentum. It is 
therefore desirable to point out a method in which 
the amplitude (or phase) of the scattering would 
be found without calculation of the auxiliary func
tion, and would pe found for a considerable energy 
interval at one stroke. 

Such a possibility is presented in a series of 
cases in the use of integral equations of scat-

. · · d b l h 2 -4 F termg mvesti!Jite y severa aut ors • or 
direct derivation of the integral equation of scat
tering, we consider the equation for the S matrix 

under the condition that the interaction is initiated 
att=O: 

iiJ.S (t) I iJt = H (t) S (t) + io (t), (1) 

00 

S (t) = _!_ \ e~i <e-H,) t 
21t ~ (2) 

x [1 +~(E-Ho) U(E)] E-Ho+~~/2)f(J:.)' 
where r(E) is a diagonal operator and U(E) is 
nondiagonal, and 

00 

~ (x) = : ~ eitx dt = ~ - 1ria (x) = (3) 

o -2TCia+ (x) 

(P =principal value). Here x~(x) = 1 and 

1 r it {1. t>o. 
- 21ti ) e ~ ~ (x) dx = '1l (t) = 0, t < 0. 

-eo 
With the aid of ~q. \4}, we can put Eq. (2) in the 
form 

"" 
S (t)='1J (t)- 2~i ~ e-iiB-H.>t e (E-H0) 

(4) 

(5) 

x [ U (E)- ~ r (E)] E-H0 :~/2) r (E) • 

We substitute Eq. (5) on the left hand side of 
Eq. (l) and Eq. (2) on the right. Then 

eo 

- ~ \ e-i (E-H,) t 
27tl ) 

(6) 

x [ U(E)-+r(E)-H -He(E-H0 ) V<E>] 

dE 
X £-Ho+(i/2)r(E) = O 

where H(t) = exp(iH t) Hexp (-iH ot) is the inter- for arbitrary t > 0, whence 
action operator in th0e interaction representation 
(if the energy spectrum of all states is continuous, U _(if 2) r _ H _ HeU = 0. 
then we can take the initial time at t =-oo and (7) 

omit B(t) in the equation). Having in view those The diagonal terms give 

*This paper is an account of researches carried out r = 2i (H + H~U)d, 
by the author in 1953 and 1954 and written up earlier in 

(8) 

the Reports of the Institute of Nuclear Problems of the and the nondiagonal terms, 
Academy of Sciences, USSR. 
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U = (H + H~U)n,d. (9) u (£,6) (16) 

The probability of transition from state i 
to state f in this case is 

(10) 

{E1 - E;.- 1/2 Imr;; (E1)p + {% .Re r;; (E1)p. 

Equation (9) serves as a fundamentalequocion 
for finding the operator U. As is shown in Ref. 3 
it has the operator solution · ' 

wherein Rer(E)= 2rr [ U + (E)S (E - H 0) U(E)] . In 
the transition to a continuous spectrum r .... 'b, 
we get the simplification: 

U=H+H~U. 
U= (1-H~r1 H. 

In this case, the transition probability per unit 
time is 

(I2) 
(I3) 

W = ~lim :t I St; (t) 12 (14) 
I t+CO 

= 211: ~a (E1 - E,) I U1;. (E1) j2 • 

f 
Carrying out a formal expansion of Eqs. (ll) and 

(13) in powers of H, we can show the complete 
identity of the solution (2) of Eq. (l) with the usual 
solutions in the fcrm of series. It was shown in Ref. 

3 that S (t) = 0 for t < 0 and lim S (t) = 1, whence 
t->0+0 

the unitary character of S (t) follows for arbitrary 
t > 0. 

Computing the matrix elements of the operators 
on the right and left sides of Eq. (12), we find 

U1; = Hrt + Htt' ~ (E- £/') Uf'i• (15) 

where the summation over[' is carried out over all 
states whose wave functions form a complete set 
of functions of the operator H 0 and of operators 
that associated with it in obtaining a complete 
set of operators. 

Since, according to Eq. (3), the integral in Eq. 
(15) enters iri the sense of a principal value, this 
equation is a linear singular integral equation. 
The theory of such equations was worked out by 
Muskhelishvili and his coworkers 5 •6 • 

We consider the scattering of the particle without 
spin on a central field, where H(r) = (g:.l /r 0) <ll (r/r 0). 

'We represent the solution of Eq. (15) in the form 

4'ltg2 ~ 1 ~ 2l + 1 
- L• ~ -'.J -2 -Pz(cos6)~z(x), 

X l={) 

where x = E/mc 2, and decompose the matrix 
element H i.f in Legendre polynomials. Then we 
get the folrowing equations: 

co 

1\'z(x) X v:2_1 = /z (x,x) +A~ ~l (y) (17) 
1 

x {-1-- 11:io (x- y)} /z (x, y) ~. x-y 

(18) 
.., 

x ~ lz+•r.(koroPV X 2 -I)lz+•r. 
0 

x (ko'"oP V y2 -1) W (p) pdp, 

where A= (g1 (lie) (r0k0) 2 (k0 =me/ li), and 
] L+ ~is a Bessel function. 

If the solution of this equation is known, then, 
from a comparison of Eqs. (16) and (14) with the 
formulas of the general theory of scattering, we 
obtain 

A co . 
/(6) = ko Vx2 _ 1 ~ (2l + I) Pz (cos 6) ~z(x), (19) 

l=O 

4'lt AI "" 
a= ~Xi=i ~ (2l + 1) J ~~ (x) p•. (20) 

0 l=o 

Compari!>on of Eq. (19) with the expression f(()) 
through the phase of the scattering gives 

1 2ARe c¥1 oz = -arctg (21) 
2 V1-(2ARecjl1)2 ' 

where use is made of the relation 

lm ~z (x) = J..j ~z (x) pa, (22) 

which follows from the unitary nature of the S 
IJJatrix, and which guarantees the real nature of 
the phases and satisfaction of the equation 

a = ( 4'lt / k0) (x2 - I )-'I• Im f (0). (23) 

In the more general case, Eq. (15) separates 
into individual equations which correspond to 
definite values of the total moment and total iso
topic spin, or also to their projections (depending 
on the type of interaction). 

As an example of the application of singular 
integral equation theory, let us consider the 
scattering of a particle without spin on a point 
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potential. Let H(r) =g2r 0 2o(r). Then [[(x,y) = 

g 2r 0 2 L-a o10 and, in terms of the variables 

E U(x) = q> (x) g2r~ 
X= mc2' xYx2 1 L3 

Eq. (17) takes the form (l = 0) 

q> (x) 

00 

(24) 

- I. ~ (x 1 y- 1rio (-4- y) )<p (y) dy = I, 
1 

where A= (l/2772}(g2/1tc)(k 0r0)2 • For the limiting 
case m = 0, we get (for x = (E/g2)r0) 

1 
<p (x) x~ 

00 

(25) 

-A~ (x 1 y- 1rio (x- y)) <p (y} dy = 1. 
0 

where ), = (l/21t2) (g2/'flc)3. 

Equations (24) and (25) belong to a type of 
equation considered in Ref. 5: 

A(z)m(z)+~\ K(z,?:)IP(?:)ci!; = f(z) 
r m) ~-z ' 

L 
(26) 

where K(z, e) does not become zero or infinite for 
z = e, Lis a certain line in the complex plane e 
and z lies on this line. It was shown in Ref. 5 
that the solution of the equation 

A (x) (() (x) + B <_x> \ q> (y) dy = f (x), (27) 
• n:t )y-x 

L 

if A(x) ± B(x) ¢, 0 on the line L, has the form 

A (x) 
<p (x) = A2 (x) - B2 (x) (28) 

1 B(x) \f(t)dtZ(x} 
- ·;i A2(x) -B2(x)) t-x- Z(t) ' 

L 

Z(x) = V A 2 (x) -IP (x) (29) 

{ 1 \ dT A(-.)-B(T)} 
xexp 2n:i ) -::r=x In A(-.)+ B (T) • 

L 

In accordance with this theory, the solution of 
Eq. (24) has the form 

q> (x) 

xVx2 -1 

1 + n:iA.x VX2=1" 
1 + 2n:iA.x V x2 - 1 

(30) 

A. ----
(1 + 2n:iA.x V x2 _ 1)'/2' 

r t Vt2=1dt 

X J (t- x) (1 + 2n:iA.t Vt 2 -1)'' 2 

1 

xexp { t -.x f ln (1 + 2n:iA.-. V~) d't} 
2m ) (T-x)(-r-t) ' 

1 

and the solution of Eq. (25) is given in the form 
<p(x) = x 2f(rrl.x2 ), where 

f ( ) 1 + iz iz (31) 
z = 1+2iz- V1 +2iz 

X . { __ 1 r ln (1 + 2in2) d } 
exp 2n:i j -.(-r-1) 't 

0 

00 

x~\ 
1tt ) 

0 
(t-1) V1 + 2izt2 

Xexp { _1_ r ln ( 1 + 2izt2T2) } 
2n:i~ T('t'-1) d't • 

For our case, when the interval of integration is 
infinite, the solutions of the two possible classes 
(with indi'ces 0 and -1} coincide, and all the solu
tions of the homogeneous equation are equal to zero. 

It is easy to show that the convergence in E qs. 
(30) and (31) is uniform, and is determined only 
by the presence of the integral in the exponent. 
Therefore it is appropriate to consider the integrals 
in Eq. (31) and show that they converge. It is 
easy to show that 

00 

F (2 2 1 \ ln ( 1 + 2izt2-r2) d~ 
zt)==2n:ij -.(-r-1) • 

0 

7t 1 
=-T2n:i 

- 1/,+ioo 

(32) 

~ ds ctg n:s ( n: . n: ) X - --8-1 sec-4 s + tcosec-4 s . 
- s (2zt2) • 
- 1/ 2-ioo 

Completing, for z > 0, 2zt2 > l, the contour on 
the right, and carrying out the calculation only for 
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s = 0, we obtain the asymptotic expression for 
F(2zt2 ) as t -+ oo: 

(33) 

+ i (2~ ln2 tV 2z - :~ ") . 
Then the outer integral in Eq. (31) converges for 
z > 0, since the integral 

~ exp {- ~ lnx + ;7tln2 x}dx (34) 
1 

= " V ~ e91ti/32 (I - ct> ( : y 2;ri)) , 

·" 
converges. Here ct>(x)=21t-'/• ~ e-t•dt. For this 

0 

reason, the solutions (30) and (31) of Eqs. (24) 
and (25) exist, though they cannot be expanded in 
powers of g 2/1ie. This is particularly clear in 
the example (31), since Eq. (31) depends only 
on the product rrA.x 2 , and can not be decomposed 
into powers d this quantity without disrupting 
the convergence of the integral. This coincides 
with the fact that the integral in (31), in corre
spondence with (33), is proportional to z-'1. 
..._.. (g 2jnc)-•t. and is not analytic in g 2 /he as 

g 2 /he -+ 0. Furthermore, this also agrees with 
the result of the application of perturbation theory 
where, for the case m #- 0, 

g2~ { r[ 1 . < ) U (x) = v I + "A .) x _ Y _ ;rt/l (x _ y) J 35 
1 

X YVY2 -Idy 

00 

+ )..2 ~ [x 1 Y- ;rio (x- y) J 
1 

00 

X y V y 2 - Idy ~ [y 1 t -;rio (y- t)] 
1 

"lf- l 
X t v t 2 - I dt + ... J 

and all the integrals diverge. 
It is easy to see that the Fredholm theory of 

scattering gives the same result as perturbation 
theory. Hence, it is also inapplicable to such a 
singular potential as the 8-potential. Thus the 
theory of the solution of singular integral equa
tions according to Muskhelishvili makes it possi
ble to obtain solutions without decomposition in 
the coupling parameter, which is especially im
portant when this solution is not expanded in such 
a series (but this, according to the Fredholm 
theory, always takes place when the potential is 
sufficiently singular at zero, andconsequentlyits 
Fourier components diminish too slowly with an 
increase in energy). 

In the case of a more complicated potential, the 
singular equations will not achieve as clear a de
scription of the solution, as in the case considered, 
but, with the help of the operation of regulariza
tion reported in Ref. 5, these equations can be con
verted into Fredholm equations with regular kernels 
which can, in turn, be solved numerically. 

For quantized fields there arise infinite sets 
of equations of the type (15). In this case, on the 
one hand, it is fundamental to assume as fruitful 
the application of the theory of systems of singll'
lar integral equations to obtain solutions without 
decomposition in powers of the coupling parameter 
but, on the other hand, the mathematics for 
infinite systems is still insufficiently worked out 
to draw more fundamental conclusions. 
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