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An investigation was conducted of the dynamical birefringence of two fractions (M = 3.5 
x 105 and M = 4.2 x 106 ) of polymet:hylmethacrylate in various solvents, The results ob­
tained are compared with theories based on a molecular model of anisotropic ellipsoidal 
complexes, and on the model of elastic-viscous spheres, The experimental data are in better 
agreement with the model of anisotropic complexes, 

1. INTOOru::TION 

B !REFRINGENCE in the flow of a solution of a 
polymer is determined by the optical aniso­

tropy of its molecules. As was shown earlier l ,2, 
the optical anisotropy of a macromolecule in solu­
tion may be due to as}Uliletry of its form ( aniso­
tropy of form) and to internal anisotropy ( aniso­
tropy of the substance of the molecular complex). 
Both anisotropy of form and internal anisotropy 
depend on the hydrodynamic forces acting on the 
molecular complex in alaninar flow. These forces 
deform the molecular complex, increasing the 
asymmetry of its form and evoking the photoelastic 
effect in the macromolecule, i.e., the appear~mce 
of optical anisotropy in its substance on account 
of the stresses arising there. 

Experiments conducted over a broad range of 
flow velocity gradients 1 have shown that in the 
observed birefringence the role of the effect due 
to deformation of the macromolecules with an in­
crease of velocity gradient. Thus, dynamical 
birefringence in a solution of a polymer observed 
in the region of large flow velocity gradients, is 
to a considerable extent a reformation effect, and 
in the case of equal indices of refraction of the 
polymer and the-solvent, a photo elastic effeclt. 

The nature of the effect observed in solutions 
of polymers at small flow velocity gradients g 
(under the conditions g -> 0) is an open question 
at the present time. 

2. THEORY OF BIREFRINGENCE OF SOLUTIONS OF 
A POLYMER IN A WEAK FLOW 

According to the statistical theory of Kuhn 3 , 
the most probable form of a linear chain macro­
molecule in solution is the form of a coiled 
complex, the length of which is 2-3 times its 
transverse dimensions. 

As an optical model of such a complex, we pro­
posed 1 a partie le of ellipsoidal form, thoroughly 
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saturated with solvent, and having a mean index 
of refraction nw, differing from the index of re­

fraction of the solvent n5 by the quantity nw-ns: 

(l) 

Fere nk is the index of refraction of the dry 
polymer, w is its "volume" in solution determined 
by the relation 

(2) 

where p is the density of the polymer, M its 
molecular weight, m the mass of the macromolecule, 
V the volume of the molecular ellipsoid (particle) 
in the solution, and N AAvogadro's number. 

According to the statistical theory 4 , a molecular 
complex in the absence of external deforming 
forces has internal anisotropy; moreover, the 
difference between the indices of refraction of 
its substance under stresses parallel to the major 
and minor geometrical axes is 

(n2 + 2)2 4 3 n~- n~ = --T ~ 5 (cxl- cx2), (3) 

where o. 1 and o. 2 are the principal polarizabilities 

of the segment in vacuum. 
The anisotropy of form of an ellipsoidal molecular 

complex can be calculated by the application of 
the laws of.colloidal optics 5 • 7, with the use of a 
molecular model 1 based on Eqs. (l) and (2). The 
total difference, obtained in this way, of the two 
principal polarizabilities of the molecular ellip­
soid in solution, taking account of Eq. (3), is 2-

n2 _ n2 (n2 _ n2)2 
T - T = 1 2 V + II. • V (L - L ) (4) 

1 2 4TC . 16TC2n2 CJl2 2 1 
8 
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FIG. 1. Dependence of 'the magnitude of birefringence 
on the velocity gradient in solutions of polymethylmeth­
acrylate in acetone. M = 4.2 x 106: 1-c = 0.5; 2-c =0.4; 
3-c == 0.3; 4-c = 0.2; 5-c = 0.1 ( gm/100 cm3 ). 

where L 1 and L 2 are constants, depending on p, 
the ratio of the semiaxes of the ellipsoid. 

Recently, Kopik 7 calculated the quantity y 1 -y2 , 

expressing it as a function of the distance h be­
tween the ends of the molecular chain. His re­
sult agrees precisely with ours, if we set p = 2 
and V = 0.3 h 3 in Eq. (4). 

If birefringence in the flow of a solution of a 
polymer under the conditions g --> 0 is regarded as 
the result of the orientation of molecular com­
plexes of asymmetric form, then the simple appli­
cation of orientation theory for rigid ellipsoidal 
particles 8 , with the use of Eq. (4), leads to the 
following expression for the dynamo-op.tical 
constant 2 : 

[n] = lim ( L\n } 
gc'llo g-o 

c-o 

(5) 

= [n]e + [nlt· 

Here Ti 0 is the viscosity of the solvent, fut is the 
observed birefringence in the solution, c is the 
concentration in g/cm 3 , D is the coefficient of 
rotational diffusion of the macromolecule, 
b = ( p 2 - l)/(p 2 + l ); [n]e and [n]1 are the parts 
of the dynamic-optical constant characterizing, 
respectively, the effect of internal anisotropy and 
the effect of the form of the macromolecule. 

Another point of view concerning the nature of 
the Maxwell effect in a solution of a polymer under 
the conditions g--> 0 is developed by Cerf 9 •10 . The 
model applied l:iy us in the form of a colloidal 
particle whose mean index of refraction nw is de­
termined by Eq. (l), is used in his theory for the 
characteristics of the optical properties of the 
molecule. However, in contrast to Kuhn, it is 
proposed in this theory that the statistically most 
probable form of a free macromolecule is a spherical 
complex of radius a 0 , characterized by the internal 
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FIG. 2. Dependence of the magnitude of birefringence 
on the velocity gradient in solutions oftfolJ.methylmeth­
acrylate in ethyl acetate. M = 4.2 X 10 : -c = 0.4; 
2-c = 0.3; 3-c = 0.2; 4-c = 0.1 ( gm/100 cm3 ). M = 3.5 
x 105 : /-c = 1.5; li-e = 1.2; III-c = 1.0; IV-c = 0.8 
(gm/100 cm3 ). 
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FIG. 3. Dependence of the magnitude of birefringence on the 
velocity gradient in solutions of polymethylmethacrylate in 
chloroform. M = 4.2 X 106 : 1-c = 0.5; 2-c = 0.4; 3-c = 0.3; 
4-c = 0.2; 5-c = 0.1 (gnJ/100 cm 3 ). M = 3.5 x 105: /-c = 1.2; 
11-c = 1.0; lll-c = 0.8 ( gm/100 cm3 ). 

viscosity Tfi and the shear modulus of elasticity Jl· 
Thermal motiol" may deform the molecular complex, 
transforming it into a spheroid, the major semi axis 
of which is 

a= a0 (I+ o). (6) 

Here o deni tes the coefficient of deformation. 
The mean squared magnitude of Brownian deforma­
tion o is 

0 

o0 = (kT I 3 V p.)'l., (7) 

where Tis the temperature and k is Boltzmann's 
constant. 

In laminar flow, hydrodynamic forces also deform 
the macromolecule, transforming it into an ellip­
soid with a ratio of semiaxes 

p = 1 + (2,5/p.)'tjog. (8) 

substance of the macromolecule. 
Thus, the theory of the elastic-viscous sphere 

regards the Maxwell effect in a solution of a poly­
mer, under the conditions g-> 0, as a composite 
phenomenon, evoked by the orientation of spheroids 
(coefficient of asymmetry of form o0 ) and their 
deformation in the flow. The relative role of these 
two effects depends on the relation between the 
viscosity of the solvent Tf and the internal vis­
cosity of the macromolecu~e Tfr For Tfi » Tfo the 
effect is basically orientational; for TJi « TJo• it is 
deformational. 

Cerf's theory leads to the following value of the 
dynamo'f>ptical constant of the solution: 

(9) 

Deformation of the elastic-viscous sphere evokes 6 = H"lo I "li) + 411) o~J I [(1Jo I "li) + 413 o:J. (9 ') 
in it the appearance of optical anisotropy, leading 
to a form effect and to a photoelastic effect in the 
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FIG. 4. Dependence of the magnitude of birefringence 
on the velocity gradient in solutions of polymethylmeth­
acrylate in toluene. M = 4.2 x 106: 1-c = 0.5; 2-c = 0.4; 
3-c = 0.3; 4-c = 0.2 (gm/100 cm3 ). M = 3.5 X 105 : 

1-c = 1.7; Jl-c = 1.5; JJJ-c = 1.2 (gm/100 cm3 ). 

where f...e and f...1 are the parts of the dynamo­
optical constant due, respectively, to internal 
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FIG. 5. Dependence of the magnitude of birefringence 
on the velocity gradient in solutions of polymethylmeth­
acrylate in bromoform. M = 4.2 x 106: 1-c = 0.4; 
2-c = 0.288; 3-c = 0.147; 4-c = 0.1 (gm/100 cm 3 ). 

M = 3.5 X 105 : 1-c = 1.2; Il-c = l.O; lll-c = 0.8; IV-c 
= 0.6 ( gm/100 cm3 ). 

anisotropy and anisotropy of form of the macro­
molecule, n is the portion of the volume occupied 
by the partie les in the solution, cis the photo­
elastic coefficient of the substance of the macro­
molecule, determined from the relation 

n1-n2 5 '1lo -- = -2 s- g, (10) 
n., !L 

where n 1 - n 2 is the difference between the prin­
cipal indices of refraction of the substance of the 
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FIG. 6. Dependence of the magnitude of birefringence 
on the velocity gradient in solutions of polymethylmeth­
acrylate (M = 4.2 X 106) in two solvents. Bromobenzene: 
1-c = 0.5; li-e= 0.4; lll-c = 0.3; JV-c = 0.2 (gm/100cm3 ). 

Chlorobenzene: 1-c = 0.5; 2-c = 0.4; 3-c = 0.3; 4-c 
= 0.2 (gm/100 cm3 ). 
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FIG. 7 .j Dependence of l1n! gc on concentration for a fraction of 
polymethylmethacrylate ( M = 4.2 X 10°) in various solv­
ents: 1-bromoform, 2-ethyl acetate, 3-acetone, 4-

bromobenzene, 5-chloroform, 6-chlorobenzene, 7 .. 

toluene. 

particle, arising in a mechanical field of gradient 

g. As is shown by Eqs. (9) and (9 '), the magnitude 
of the dynamo-optical constant 11 in the theory of 
the eiastic-viscous sphere differs only by a 
factor of 3/5 for the two extreme conceivable 
cases of pure orientation ( Tf 0 tqi « 8~ ) and pure 
deformation ( TfoiTfi » 8~ ), and is determined by 
the quantities f, fl, nw and n 8 • Therefore, the 
measurement of 11 may not serve for a qualitative 
comoarison of the roles of the orientational and 
def~rmational effects in the observed birefringence. 
The experimental determination of the quantities 
11e and 11! separately leads to more instructive 
conclusions as will be shown below. 

3. METHOD AND RESULTS OF THE INVESTIGATION 

I f . h . l 1 ll 12 . n con ormance wit previous resu ts ' ' m 

order to separate the effect of form from the ef­
fect of internal anisotropy, an investigation was 
conducted, in the present work, of birefringence in 
the flow of solutions of two fractions of poly­
methylmethacrylate in various solvents. The 
molecular weights of the fractions were de­
termined by the magnitude of their characteristic 
viscosity [Tf] in benzene, according to the 
formula 13 

The optical setup used by us has been de­
scribed earlier 14 •15 • For the measurement of the 
magnitude of birefringence of solutions of the 
first fraction ( M = 4.2 x 106 ), a mica plate 0.04 A 
served as a compensator. For the investigation 
of the second fraction ( M = 3.5 x 105 ), where the 
magnitude of birefringence is very small, a mica 
plate ( 0.019,\) was used as a compensator (A 

~ 5461 A). The phase difference arising in a solu­
tion with a given. velocity gradient was calculated 
according to the formula 

where f3 and f3 are the extinction azimuths of the 
compensator in °the presence and in the absence 
of a velocity gradient in the solution investigated, 
and 8 0 is the phase difference created by the 
compensator. 

A universal dynamo-optimeter similar to those 
described in other works 14 • 15 was used for the 
measurements. The measurements were performed 
in a gap with an external rotor. The length of the 
layer of liquid worked was l = 6 em. A rotor 
forming a gap M = 0.86 mm was used for the study 
of high-molecular fractions. The low-molecular 
f.ractions were investigated in a gap 11R = 0.36mm. 
Laminar flow was maintained for all the solutions 
over the interval of velocity gradients investigated. 
All the measurements were made at'the temperature 
t = 21°. 

The dependence 11n = f(g), obtained for the solu­
tions studied are presented graphically in Figs. ' . ' 
1-6. The figures show that for all the solutions 
of low-molecular fraction, the dependence 11n 
"'f(g) has the form of a straight line over the 
entire range of velocity gradients investigated. 
Similar behavior of solutions of high-molecular 
fraction depends on the solvent used. 

In all c~es, the experimental points permit a 
sufficiently trustworthy determination of the 
quantity ( f>..n/ g) g-+O of the solution. In the region 
of concentrations of interest to us, solutions of 
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FIG. 8. Dependence of 6. n/ gc g->O on concentration for a fraction of 

polymethylmethacrylate (M = 3.5 X 105 ) in various solvents: 1-hromoform, 
2-ethyl acetate, 3-chloroform, 4-toluene. 
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FIG. 9. Dependence of Tfsp/c on concentration for 
fractions of po lymethy lmethacry late in various 

solvents. M = 4.2 x 106 : 1-chloroform, 2-chlorohenzene, 

3-hromoform, 4-bro mohenzene, 5-ethyl acetate, 6-toluene, 

7-acetone. M= 3.5 X 105 : /-chloroform, I/-bromoform, 
III-ethyl acetate, /V-toluene. 

497 



498 TSVETKOV, FRISMAN AND MUKHINA 

[n]1x 109 

fJ 
12 O,G 
11 
10 o,s 
I 
4 0,¥ 
7 
6 o_J 
5 
'I O,Z 
J 
z 0,1 
1 

1.3 

F~G. 10. Dependence of the part of the dynamo- optical 
constant [n]1 due to the effect of form, on the index of 
refraction of the solvent n : 1-M= 4.2 X 106 , 2-M= 3.5 s 
X 105 • 

polymethylmethacry late have a comparatively 
small magnitude of dynamical birefringence, which 
makes it necessary to take into account the •·ole 
of its solvent. This was carried out by assuming 
additivity of the magnitude of birefringence of the 
solute and of the solvent. From the value of 
( 6. n/g) obtained for the solution, the value of 

g40 

( 6.n/g )5 corresponding to the solvent was cal-

culated, which was measured in all cases when the 
role of the latter was clearly manifested. The 
value of ( 6.n/g \ for the solvents investigated are 
given in Table I. 

The dynamic-optical constants [n] =lim 
x ( 6. n/ g T) 0c) g->O of the fractions were found from 

c ->0 
curves of the concentration dependence of the 
quantity c· 1( An/g )g.., 0 - c" 1 ( 6.n/g )5 by the 

extrapolation of this quantity to zero concentmtion. 
These curves are shown in Figs. 7 and 8. The 
vlaues of [n] obtained by this means for both 
fractions are given in columns 6 and 12 of Tahle I. 
Concentration measurements of relative viscosity 
(Fig. 9) permitted the determination of the char­
acteristic viscosity of both fractions of poly­
methylmethacrylate in various solvents, the 
values of which are given in columns 5 and 11 of 
Table I. 

' 
4. DISCUSSION OF RESULTS 

The experimental results obtained by us should 
be compared with the basic equations: with Eq. 
(5) of the theory of anisotropic complexes arid with 
Eq. (9) of the theory of elasto·viscous sphere:s. 

As is shown by Eq. (5), the value of [ n11 may 
be determined, if the measured values of [n ], the 
dynamo-'optical constant and (n] , the part of'it 
determined by internal anisotropy ~f the complex, 
are known. 

The hydrodynamical theories of solutions of 
macromolecules yield the general relation 

D = RT I B"'o ["11M, {11) 

where B is a numerical coefficient depending on the 
particular hydrodynamic model of the molecule. 
Thus, for the statistics of a coiled complex, 
theory gives 16 • 1 7 B = 4, for an extended e llip· 
soid 18 B = 6/F(p), where F(p) is a form factor. 
With p = 3, F ( p) = 3/2 and the result for the 
ellipsoid agrees with the formula for the complex. 

Combining Eqs. (5) and (11), and setting Ff =4, 
we get 

[n]e = 0.11 [Yj](b/ kT)[(n~ (12) 

+ 2)2 / ns] (cx1 - cx2). 

It cannot be asserted a priori that the difference 
between the polarizabilities of the segment 01.1 

... 01. 2 in the solvent does not depend on the index 
of refraction of the latter. At the present time 
there are not sufficient data for a duscussion of 
this question. However, it seems probable to us 
that the effect of a change in 01.1 - 01. 2 with a change 
in n 5 will play a considerably smaller role than the 
effect of the form of the complex. Therefore, as a 
first approximation, we neglect these changes, and 
will consider the anisotropy of the segment to be 
the same in all of the solvents, and to coincide 
with the quantity 01. 1 _ 01.2 entering into Eq. (12). 

With the use of a solvent whose index of re­
fraction n s coincides with the index of refraction 

nk of the substance, the second term on the right 
hand side of Eq. (5) becomes zero, so that [n 1 
= [n ]e. In our case, toluene satisfies the condi­
tion nk = n 5 • Thus, the dynamo-optical constant 
obtained for solutions in toluene, makes it possi­
ble to determine (01.1 - 01. 2 ). Applying Eq. (12) to 
toluene, we get 

[n}, kT n, 
cxl-cx2 = [7J],0,11b (n~ +2)2 • (13) 

The subscript t indicates that the solvent is 
toluene. Substituting NJ. (13) for 01.1 - 01. 2 into 
Eq. (12), we obtain for the quantity [ n ]e in any 
solvent 
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TABLE I 

Solvent 

Substance ( ~~ ). -1012 11, • 102 poise 

t 2 3 

Chlorobenzene . 1.35 0.800 
Toluene, .. 0.79 0,589 
Otloroform . 0.13 0,592 
Ethyl Acetate . 0.20 0.510 
Bromoform . 1,04 2.080 
Bromobenzene · 2.20 1.167 
Acetoue • • • • - 0.347 

fn] .. = [n],fll1 n,(n! +2)2 
f1l)tna(n~+2)i' (12') 

The expression for (n ](entering into Eq. (Q), 

may he transformed by tlie substitution in it of the 
coefficient of rotational diffusion from the rela­
tion 

D = kTf"''o Vfo, (11 ') 

where f 0 is a form factor determined by Eq. (16). 
The use of (ll ') and (12 ') in Fq. (5) gives 

_ M ( n~ -n!)2 (14) 
[nlt- 120 reps RT {(Lz- LI) b fo} 3 

ns 

= [n]- [n]t [11) n, ( n~ + 2)2 
[7lltns (n~ + 2)2 • 

All of the quantities entering into the right hand 
side of Eq. (14) are obtained from the exp;riments. 
The values of [n ]e ,obtained from the experi­
mental data through F.q. (12 '), are presented in 
Table I for all the solvents investigated. Also 
tabulated is the quantity ( n ]f' calculated as the 
difference between [ n] and [ n] . 

The dependence [n]1 == f(n 8 )eis shown in Fig. 
10 for the two fractions of polymethylmethacrylate. 
The ordinate has a scale corresponding to each 
molecular weight. It is evident from the graph 
that in both cases the points lie on parab~li~ 
curves, in agreement with Fq. (14). · 

Using the obtained values of [n ]f the factor 
( L2 - L 1 )b[0 of Eq. (14) may be calculated. The 
results for both fractions investigated are given 
in columns 9 and 15 ~f Table I. The factor. 

M == 4.2 X 106 

ns [1!). ~~l•lt·"' m/l00cm3 

4 5 7 8 

1,523 5.95 0.866 0.752 0.114 
1,498 3.87 0.480 0.480 0.000 
1.446 8.45 3.340 1.015 2.325 
1.372 4.45 11,500 0.500 11.000 
1.598 5.92 5.000 0,784 4.216 
1.560 5,65 

I 
2,545 0.737 1,808 

1.359 3.70 12,967 0.417 12.550 

( L 2 - L 1)bf 0 is a single-valued function of the 
ratio p of the axes of the macromolecule, and 
makes it possible to determine f through the 
use of the well-known relations -7 : 

(15) 

= _rc_ (2 2 + 4- 3p ln P+ Vp2=1); 
p 2-1 p v p2-1 p-v p2 1 

(16) 

The values of p obtained in this way are given 
in columns 10 and 16 of Table I. Within the 
limits of experimental error, these quantities ap­
pear to be constants for a given fraction, inde­
pendent of the solvent, and close to one-another 
for the two fractions investigated. The somewhat 
low value of p found for the low-molecular fraction 
~s explained, possibly, by the large relative error 
m the determination of ( n ]e for this fraction. In 
any case, the experimental values of p, lying in a 
range from 2 to 3, may he considered to be in 
good agreement with the theoretical values pre­
dicted by the statistical theory of Kuhn 3. -

The experimental data of Table I allow one 
comparison to be made with the results of 
orientation theory. Using Eqs. (12), (14), (ll) 
and (ll '), it is not difficult to obtain the relation 
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TABLE I 

I 6 M- 3.5 X 105 M=4.2x ro 
I 

A A 
(L,-L,)bf, P=- [,J,c-'100 om~ [n] • 10' [n]e • 10' [n]f • 10' (Lz= L,)bf, p=-

B 13 

9 10 11 12 13 14 15 16 

Substance 

Chlorobenzene . 

Toluene ••.• 

Chloroform . • . 

Ethy I Acetate . 

Bromoform ••• 

Bromohenzene . 

Acetone .•.. 

24.4 
-

60.6 
44.5 
40.8 
44,4 
43.2 

[nltnt (n~+2)2 

= llllt ns ( n~ + 2)2 

2.32 
- 0.58 

3.30 1.28 
2.92 0.51 
2.82 1.06 
2.92 
2.90 

M(nt-n2)2 1 
-1- -{ 1 s s {(L2- Ll) bfo} 120~p2RT' ll n8 

which indicates that in one and the same solvent 
in the. presence of the effect of form ( nk =1= n, ), the 
quantity [n]/hJ must depend on the molecular 
weight of the fraction. ktually, experiments with 
fractions of polystyrene in but anon~ ( n - n 
= 0.21) showed a sharP increase of [n J}[q] ;ilth 
an increase in the molecularweight of the frac-
• 15 On h t10ns • t e contrary, for fractions of poly-

butadiene 19 and polystyrene 15 in solvents with 

I 

0.058 0.058 0.000 - -
0,189 O.H8 0.071 22.1 2.20 
0.277 0.045 0.232 11.3 1,80 
0.224 0.111 0,113 13.2 1.85 

indices of refraction close to the index of refrac­
tion of the polymer ( nk - n "' 0 ), the experiments 
disclosed the constancy of tn ]/[7]] with a change 
in M, which is in full agreement with Eq. (17). 

A comparison of the magnitudes of [ n ]/[7]] for 
the two fractions of polymethylmethacrylate in­
vestigated in the present work, in four solvents, is 
made in Table II. In the last column of the Table, 
the ratio X is given, of the magnitudes of [n]/(7]] 
corresponiling to the fractions M = 4.2 x 10 6 and 
M = 3.5 x 105 in one and the same solvent. The 
value of X increases with an increase in n - n , 
in accordance with Eq. (17). For toluene Cnk =:s) 
one would expect X = l. The too-high value 
X = 1.24, found in the experiment, is apparently 
associated with the fact that in the calculation 
of the quantity [n ]/[7]], the extrapolation of [71] 
to g -> 0 was not made, which for the high­
molecular fraction may introduce a noticeable error 
in a direction to increase the values of [n]/[7]]. 

We compared the experimental results with Eq. 
(5) of the theory of anisotropic complexes. A 
similar comparison can be made with Eq. (9) 
of the theory of elasto-viscous spheres. For this, 

TABLE II. Comparison of the magnitudes of [n]/~] for two fractions of 
polymethylmethacr_ylate in various solvents, 

Solvent I I [n]/ [lJ] • 10•' I { ( [n]) I ( [n]) \ 
n,._-ns M=4.2xw61 M=3.5xl05 X= W • [,;] al 

T oluene. 0.002 1.24 1.00 1.24 
Chloroform 0.054 3.95 1.48 2.66 
Bromoform . 0.098 8.44 2.11 4.00 
Ethyl Acetate . . 0.128 25.80 5.45 4.75 
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TABLE ill. Characteristic constants of macromolecules of poymethy lmethacry late 
according to the theory of elasto-viscous spheres. 

s l 
M = 4.2x 106 M = 3.5x 10_5 

o vent --·-rt-- --~r~- jP according\ ll p ace ord ing 1 o-, ll, p.. to-• 
o to Eq. (22) f'- • to Eq. (22) 

Bromoform 0.34 
Chloroform 0.43 
Ethyl Acetate 0.38 

Chlorobenzene 0.27 
0.36 

Acetone 0.38 

the dvnamo-optical constant 6. of Eq. (9) is trans­
formed into the characteristic value [n] of Eq. 
(5), by converting from the volume concentrations 
n to weight concentrations g /cm 3 • Taking into 

account that in Eq. (9), n = v eN AIM, we obtain 
in place of (9), 

[ ] _ 1. (b.n) _5e 0 n.VNA n- 1m -- --
gtJ0c g~ o {1. M 

c~o 

(18) 

and using Eqs. (l) and (2), we will have 

[n]e = 5ns NA 6 ~~; (19) 

It is convenient to modify expressions (19) 
somewhat, using in the formulas for [n ]e, the 
Einstein equation, appearing in the combination of 
(11) and (11 ') for suspended spherical particles: 

VNA/ M = [1)]/2.5 (20) 

and introducing into the expression for [ n ]f, the 
quantity 8 0 from Eq. (7) of the theory of elasto­
viscous spheres. Then in place of Eq. (19) we 
obtain 

(21) 

Equations (21)-apparently may be used for an 
approximate determination of the quantities E/fl 

1.55 
1. 70 
1.61 
1.41 
1.57 
1.61 

0, 72 0.20 1.3 1,50 
0,31 0.26 1.4 0.67 
0, 75 0.20 1.3 3.10 
1,17 - - -
0,68 - - -
0,93 - - -

and o 0 from the experimental data since variations 
of the unknown factor e are insignificant ( 1 ~ e 
~ 3/5 ). The quantity [ n ]e is obtained from 
measurements in toluene. According to the data in 
Table II, [n ]/[ry] is close to 1 x 10-lO for both 
fractions in toluene. Therefore, assuming n s = 1.5 
and 8 = 3/5, we obtain E/fl = 5.5 X 10-ll for both 
of the fractions investigated. Hence, taking Eq. 
(lO) into account, it follows that (n 1 - n 2 )/ nw 
= 1.4 x l0- 10 ry g. This means that the magnitude 
of the relative ~ifference between the indices of 
refraction of the equivalent elasto-viscous sphere 
is determined by the magnitude of the shearing 
stress in the flow, and does not depend on the 
molecular weight (at least with a change of the 
latter from 3.5 x 105 to 4.2 x 106 ). 

Expression (21) for ( n ]f is completely analogous 
in form to Eq. (14) and, therefore, conforms as well 
as Eq. (14)1 to the parabolic dependence [ n ]f 
= f(n 5 ) obtained experimentally. Values of 80 
are given in Table III, calculated by Eq. (21) with 
the use of the experimental magnitudes of ( n ]f 
in Table I. Here, we have used e = 3/5, whicli. 
corresponds to the case of pure orientation. In 
the case of pure deformation, e = l, and the 
values of 80 become 1.3 times smaller than those 
given in Table III. 

The ratios of the axes of the deformed sphere p 
may be calculated from the values of 80 according 
to the formula 

(22) 

The values thus obtained are represented in Table 
III. Combining Eq. (20) and the"expression for 
[n lf in the form (19) yields 

56 (nk- n8 ) 2 

p. = p2 ['IJ] [nJ, (23) 
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Relation (23) may be used for the determination of 
fl· The values of f1 thus obtained are given in the 
last column of Table III. These values have the 
same order of magnitude in the various solvents 
and decrease with an increase of M, which is found 
fo be in agreement with the predictions of the 
theory of elasto-viscous spheres. 

The coefficients of asymmetry 8 0 and p found 

by F:qs. (21) and (22) are practically the same for 
the various solvents and molecular weights.. They 
are smaller in absolute value than the magnitudes 
of p calculated by Eq. (14), although of the same 
order of magnitude. However, the latter cireum­
stance apparently is associated with peculiarities 
of the calculation of the optical effect of form in 
the theory of elasto-visco~s spheres, becam~e in 
principal, for the case of pure orientation ( (t=3/5), 
F:q. (21) could coincide exactly with Eq. (14) of the 
orientation theory. In any case, the values of 
p (or 8 0 ) from Eq. (14) as well as from Eq. (21) 
are sufficiently large. Therefore, even from the 
point of view of the theory of elastic spheres 10 , 

it is not possible to neglect the effect of orientation 
in the region g-> 0 for the polymer M = 4.2 x 106. 
Powever, the most serious difficulty in the inter­
pretation of our results from the point of view of 
the model of elasto-viscous spheres is the fact 
that, for this model, 8 0 should decrease with an 
increase of the molecul!l" weight of the sample, 
while the experimental data lead to the conclusion 
that 8 0 pra~tically does not change with a c:hange 
of more than a factor of ten in M. 
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