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There is proposed a new quasi-classical solution of th.e Schr~dinger equation for E > J V I· 
This approximation is applied to the solution of the problem of the motion of a neutron in a 
potential with a complex component. An explanation is obtained for the behavior of total 
cross sections in the energy region 20-100 mev, For energies of 2-10 mev the Schrl!dinger 
equation is solved for a complex potential which goes to zero exponentially at infinity. It is 
shown that the absorption cross section for a well with fuzzy edges does not have sharp maxima 
as a function of R and E. This is in contrast to the results for the absorption cross sections 
for a rectangular potential well. The agreement of the calculated absorption cross sections at 
2.5 and 4.3 mev with experimental values is satisfactory. 

F OR a long time it hal been assumed that if the 
wavelength A of a neutron is less than the 

nuclear radius R, then the cross section for all 
inelastic processes of neutrons with a nucleus is 
equal to rrR 2 • However, experiments determining 
the total cross sections for neutrons of energy of 
the order of 100 mev 1 showed that not every neutron 
impinging on a nucleus leads to an inelastic 
event. In order to explain these high-energy inter
actions it was proposed 2 that fast neutrons have a 
finite mean free path in nuclear matter. At the 
same time it was considered that nuclei were 
black for low energy neutrons. The rough theory 
of cross sections based on the idea of black 
nuclei with a sharp boundary3 led to monotonically 
decreasing cross sections as a function of energy. 
This turned out to be in disagreement with measure
ments. It was shown experimentally' that total 
nuclear interaction cross sections have maxima 
and minima as the energy of the neutron is varied. 

In order to explain these experimental facts there 
was proposed5 the modd. of the semi-transparent 
nucleus. Accor·ding to this model, l-3 mev neutrons 
have a large mean free path in nuclear matter. 
This arises because at low energies th.e collisions 
of the incoming neutrons with the nucleons in the 
nucleus are hindered by the Pauli principle which 
restricts the possible momentum transfers between 
the colliding particles. 

In this way there have arisen two models. They 
both utilize the assumption of a finite absorption 
c::~efficient in a nucleus but differ in a series of 
important characteristics. For low energies the 
model involves a nucleus with sharp boundaries 
but for high energies the model is an optical one. 
In a nuclear model involving sharp boundaries there 
are additional refraction effects which do not ex
ist in the optical model. Actually, a model with 
sharp boundaries is applicable only when A» R, 
i.e., in the region where there is no inelastic 
scattering. The conclusions from this model were 
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set forth in a previous communication by this 
author 6 • In this paper we examine a nuclear model 
with a finite coefficient of absorption and a fuzzy 
boundary which goes over into the optical model 
at high energies. At low energies it gives results 
significantly different from those given by a model 
with a rectangular potential. 

I. STATEMENT OF THE PROBLEM 

It is assumed that the interaction of a neutron 
with a nucleus can be represented by a complex 
potential V + iW, dependent only upon the 
coordinate r (neglecting spin orbit interactions), 
For simplicity it is ass\IIIIed that the real and 
imaginary potentials depend on r in the same way. 
For sufficiently small va.lues of r( r < r nl the func
tion V + iW goes over into a constant. The main 
variation of this function takes place in a thick
ness 1.5-2 x 10·13 em. In this case theSchrHdinger 
equation for the neutron has the form: 

~ljl + (2m I h2) [E + V (r) ( 1 + ie)] 'f = 0, (l) 

where W (r) = (V (r). We now make the substitution 

k = ( 2mE )~ /"h and K0 = [ 2mV(O)]~ /"h. Then, 

writing the function t/J in the form: 

~ = ] IJ!t (r) <Pt, m (%, ~}, (2) 
l, m 

we obtain for the radial function t/Jl (r) the equation: 

(3) 

When r $ r0 , f(r) = f(r 0 ) = l; when r-> oo, f(r)-+0 
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(it is assumed that f(r) ap}I'Oaches zero sufficiently 
rapidly--more rapidly than any power law). 

In order to solve Eq. (3) it is convenient to make 
the substitution*: 

1\!z (r) = r-'l, [u}2 l (r) Ht~•J,(kr) (4) 

+ 'YJzUl1l (r)Hl~'/, (kr)]. 

We then obtain the following equations for the 
functions u(J\ u\2 ): 

d2 (1, 2) dIn r'f,H(l. 2) du)1• 2) 
_u_z_ +2 1+'/, 

dr2 dr dr 
(5) 

+ K~f (r) (1 + ie} u)L 2l = 0. 

When r-> oo, Eq. (4) must approach the usual ex
pression for the sum of incoming and outgoing 
waves, and thus: 

lim u)1l (r) = lim u)2l (r) = 1. 
T+ CO T-+ 00 

It is more convenient to write Eq. (5) in terms of 
reduced coordinates x = kr: 

(6) 

+K~f(x)(l +iC)ul1' 2l=0. 

ThesolutionofEq. (6) turns out to be simplest 
at high energies. 

2. HIGH ENERGIES 

If the energy is sufficiently high, then the func
tions u1 can be represented in the fonn: 

00 

uz = exp {- ~ Szdx}. 
0 

(7) 

00 

We then obtain for the function 51 the equation: 

dS(t) dIn x'f•H1(+1)'/· (x) (8) 
-' +sF+ 2 · sfl> dx dx 

k2 
+ k~ j(x)(1 + iC) = 0. 

Neglecting dSzldx by anaogy with the similar 
quasi-classical problem we obtain: 

) C ( d lnx''/,H(ll, (x') 
Uz (x) = exp U d:;~- 1• 

X 

(9) 

[(dlnx''I•H)1~, 1,(x'))2 k~ , . ]'/,) } 
- dx' - a2 f(x )(I+tC) dx' . 

In order that the function t/11 be finite at zero it is 
necessary and sufficient that: 

"'lz = u)2l (0) I up> (0). (10) 

The function under the integral sign in Eq. 
(9) is finite everywhere on the real axis and there
fore the evaluation of the integral presents no 
difficulty. 

We now introduce the notation: 

dIn x'f,H(l) (x) 
Re 1+'/, 

dx 
(ll) 

din x'f,H(l) (x) 
Im 1+'/, = b1• 

dx 

If it is assumed that the real part of the po
tential is much larger than the imaginary (which 
is the case for a transparent nucleus), then the 
expression under the square root sign can be ex
panded: 

[(a1 + ib7}2- c2 (1 + i~)]' 1 • = i [(bz- iaz)2 + c2 ]'1• 

- 1/2c2q(bz- iaz)2+c2]-'1•. 

Then 11 has the fonn: 

'YJ = exp {- 2i ~ [bz (x)- Re((b1- iaz)2 + c2 )'/•] dx 
(12) 0 

* H1~~) are the Hankel functions of the first and 

second order with half integral indices. 
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where 

Re {(bz- iaz)2 + c2}'1' = 2-'f, {(b7 + c2 -- ai) 

+ [(bi + c2 - a7)2 + 4a7b7]'1•}'1'. 

It is now easy to get expressions for the total 
cross section and absorption cross section: 

oo oo I 2k 2 

crabs = ~ (21 + 1) 7tA2 (1 -/ Tj1 )2) = ~ (21 + 1) 7t),2 ~ 1- exp {- k 2° 2-'/, ~ (13) 
l--o l=o 

00 

x ~f(x)[bi+c2- ai+ {(bi+c2 -- a1 )2 +4a1b7}'1• ]'1'[(bi+c2 - a7)-f- 4aib1 ]-'1•dx}). 
0 

00 

atot-= ~ 2(2l + l)7t),2(1 -/"'z/2) 
[=oQ (14) 

00 00 

= ~2(2!+ l)7tA2 [ 1-cos :2 ~ {bz- 2-'1'Ibi+c2-ai+{(h7+c2-ai)2 

l=O 0 

k2 00 

+ 4a1b7}'1•]''·} dx exp {- k~ 2-'/• ~ ~ f(x)[bi + c2 - ai 
0 

+ {(b7 + c2 - a1)2 + 4aib1}'1• J''' [(b1 + c2 - ai)2 + 4aib]]-'1• dx}]. 

Thus, the calculation of cross sections for 
any form of the potential can be carried out in 
this case by quadrature. However, the quadi"ature 
has to he carded out numerically and therefore it 
is convenient to expand the square root under the 

cr tot 

In the case when it is possible to neglect the 
term k ~/k 4 the expression under the integral sign 
for the harmonics with l < kR is equal to the me an 
free path of a neutron with momentum lin a nucleus 
according to the optical model. 

Let us assume that the potential at the nuclear 
boundary decreases expon~ntially according to 
e-a.x. Then, using for the radius of the nucleus 
R = r0 + 1/a., we get from Eqs. (15) and (16) that 
the geometrical path of a neutron with momentum 
l < kR is equal toR- l( l + l)/2k 2R 2 and does 

integral in a series, which is always possible if 

k~/k 2 << l. 
The E qs. (13) and (14) can then he put into the 

form, valid to order including k~/k4 : .. 

(15) 

(16) 

not depend on the magnitude of 1/ a. for constant 
R. The boundary region is important only for 
l > kR. 

-When 1/a.« A, then at very high energies (in the 
approximation in which k~/k4 can he neglected) 
only waves with l « kR penetrate into the 
nucleus. If l/ a.> A, then waves with l > kR 
penetrate into th; nucleus. In the first case the 
departure from geometrical optics consists only 
in the scattering of waves with l = kR; the contri
bution to the cross section of these tends to 0 
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like A. If, however, the fuzzy region is larger 
than the wavelength, then the effect of the boundary 
on the magnitude of the cross section depends on 
the relative sizes of the wavelength and the nuclear 
radius. 

For heavy nuclei having R "' 7 - 8 x 10"13 • the 
cross section increases by about 1'0% relative to 
that when l/ o:. << A and the same value of r 0 + 1/ o:. 
For light nuclei the cross section increases very 
strongly. However, if it is assumed that V(r) is 
proportional to the density of nuclear matter then, 
in this case, increasing the fuzziness (with an ex
ponential form of the boundary) deere ases the 
density of nuclear matter in the middle. 

If the density of nuclear matter in the center is 
kept constant, then the absorption cross section 
depends very little on the form of the boundary 
(changing only by several percent}. However, if 
it is assumed that V (r) does not depend on nuclear 
density, there results a strong dependence of the 
cross section of light nuclei on the boundary 
behavior. At lower energies, when the second 
term in the exponent cannot be neglected, waves 
with l > kR penetrate into the nucleus even for 
1/ o:. « o:. *. This effect persists no matter how 
small the fuzziness. In this case the absorption 
cross section for sufficiently small path lengths 
of the neutron in the nucleus can be 15-20 percent 
greater than rrR 2 even for heavy nuclei. 

A more detailed study of the absorption coef
ficient cannot be carried out at present because 
of almost complete lack of experimental information 
on absorption cross section for energies with 
E > V. 

An important conclusion follows from Eq. (16). 
The argument of the cosine decreases with in
creasing energy. At some energy it passes through 
the value 2rr, and this corresponds t-6 a minimum in 
the total cross section of a given l. At a still 
higher energy there appears a maximum corre
sponding to cosine cpz = l, that is, cpz = rr. After 
this, the cross section falls monotonically. The 
sum of the cross sections likewise has a maximum 
and minimum (although weaker). This maximum 

should be observed at higher energies for heavy 
nuclei than for light ones due to the longer path 
of the particle in the nucleus. This displacement 
of the maximum as a function of atomic weight is 
confirmed experimentally. From the position of 
the minimum in the cross section for Ph at 
E =55 mev it is possible to evaluate th.e real 
part of the potential for R = 1.2 x I0- 13 A 1 / 3 

(in the case of Pb the boundary shape has little 
influence on the cross section). This leads to 
U(O) = 35-40 mev. 

It is worth mentioning that for R = 1.2 x 10·13 A l/3 

the Fermi energy is equal to 31 mev and for this 
reason the potential U, taking into account the 
binding energy, should equal about 38 mev. 
Similar values are obtained also at lower energies. 

At energies greater than 100 mev the simple 
model with a complex potential apparently is not 
applicable. 

3. THE LIMITS OF APPLICABILITY OF THE 
QUASI-CLASSICAL METHOD 

In order to make clear the limits of applicability 
of the quasi-classical solution, we return to Eq. 
(8). We write this equation in the form: 

dS1 S 2 s<o>• dIn x'f, Hj~,1 {x) (17) 
dX + z - t + 2 dx ' Sz 

dIn x'l• H 11> 
-2 I+•/, S}0l = 0. 

dx 

Then, assuming that the approximate solution 
s<f>is close to the exact solution sl. the differ-

ence s; - s: 0>2 can be replaced by 2(Sz-S<f~Sf 0 >. 
In this we are neglecting the quantity S1 -Sf0 > as 

compared to 2Sf 0 >. Equation (17) then takes the 
form: 

(18) 

d) (dIn x'l• H<1> 
dxt +2 [Sz- s~o>J dx t+'t. + 2s:ol) = 0. 

This is a lin'ear equation of the first order. After 
some transformations, the solution can be written 
in the form: 

s, = S)0> (x) +I dx' d)~~~x') exp {2 ~/(dIn x"''·;l¥·,, (x") + St (x")) dx"}. 
S X 

This solution is significantly more accurate 

* Translator's note: This looks like a typographical 
error. I think that it should be 1/ o:. <<A. 

than the second approximation of the usual quasi
classical method ~hich can he obtained from it 
by using integration by parts: 
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d ~(O) 1 .,, H(l) -1 
S (l) - s(O) 1 l X ( a n X l+'f, (0)) z - z +---- +Sz +I(x) 2 dx dx • 

(19) 

For s-waves the second term of (19) gives a factor 
which drops out when the amplitude of the 
scattered wave is calculated. For V= E this term 
contributes ·-v 20%. The magnitude of I (X) is 
much smaller and for E = V it is less than 1-2%. 
For l,f. Othe second term of (18) does not drop 
out in the calculation of the scattered wave. 
However, when l < kr 0 the correction is small. 

The correction is significant only when l "'kr 0 • 

When U""' E the contribution of the second approxi
mation to the magnitude of Tfz when l = kR is 
smaller than e" 0 •4 i. The correction to the ab
sorption cross section is not significant if the 
ab;orption is large. For this reason we can con
sider that Eqs. (13) and (14) are valid for V <E. 
However, it is not necessary to require the more 
stringent condition that V «E. 

4. LOW ENERGIES 

If E < V ( 0 ), then the quasi-classical method 
of calculation is not satisfactory. In this case it 
is necessary to carry out calculations using an 
exact solution of Eq. (3) with a definite form for 
the boundary. The following calculations have 
been made on the assumption that f(r) ,e·CX.(;r-r o) 

when r;: r 0 • It is then ~ecessary to satisfy the 
boundary condition when r = r 0 : 

1 d<jli 1 d<jla (20) 
-4Ji dT = ~dr. 

When r::::. r 0 the potential Vis a constant, and 
therefore the solution is written in the form: 

In the region of changing potential r;: r0 a solu
tion is sought, as earlier, in the form 

1 <tH2l _,,, u<IH2lH (1)(2) (kr) 'fa = r l l+'f 2 • 

Here we sought a solution of Eq. (6) in the form of 
a series involving an expansion in powers of 
k~ I cx. 2 • 

Let us make use of the condition ul = 1 as 
r -+ oo:I'hen as a first approximation let us place 
uz = l in Eq. (6), getting an equation of the first 
order for du1 / dr: 

d2u dIn y'l• H<1> (ky I a.) __ z +2 Z+'i• 
dy2 dy (22) 

duz 
dy 

k2 

+ a.~ j(y) (1 + iC) = 0. 

Finding duzldy from Eq. (22) and integrating a 
second time we get: 

k2 00 

u~1> (y) = 1- : · ( 1 + iC) ~ [y''1'H~I_{..."(ky' I oc)]-2 
y \23) 

00 

X ~ j(y") [y'''1•HJ¥,!._ (ky" /ot)]2 dy' dy". 
y • 

Equation (23) can be transformed into a more con- venient form: 

k2 00 

u~1>(y)=1- a.~(1 +iC) ~y'[H}¥.1,(ky'jot)]2 j(y') 
y 

Y' 

x ~ rHw.,. (ky"f oc)r2 dy;~y". 
y 
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Evaluating the inside integral we then find finally: 

u~l) (y) = I--!- k~ (I + i:) ~ {r IPz (ky' I a)j2 I I 

2 a k j (ky' I a)2l J (y ) dy - (24) y 
Px oo 

l (ky I a) (' { . k ' 
Pz (ky I a) ) exp 2t ~ (y - y)} (ky' / rx)-2l·{Pz(ky' /rx)p f(y') dy'}. 

In Eq. (24) 

If it is assumed that 1/ 01.= 1:5 - 2 x 10-13 , 

then the first approximation turns out to be insuf
ficient and it is necessary to take 3-4 terms of the 
series for E = 3-10 mev. However, the integrals 
depend only on the single parameter k/ 01., and this 

significantly simplifies the calculations (the para
meters k 0 , t;; and r 0 can be varied at will). 

The equation for the nth approximation can be 
obtained from Eq. (6) by introducing into it the 

(n-1)st approximation, and has the form: 

. k2 ':' 
Ull)[n] (y) = I - ~ a~ (i + iq { ~ (ky' jrx)-21 1 P 1 (ky' jrx)i2 Ul1)(n-1] (y')j (y')dy' 

y (25) 
Pf(kyla)f { k } 
Pz (kyfa) j exp 2i-;-(Y'- y) [Pz(ky'/rx)]2(ky'jrx)-2lf(y')u~l)[n-ll(y')dy'}· 

y . 

It should be pointed out that such complicated ex
pressions are needed only for waves with small l 
(less than 5-6), for which quasi-resonances can 
exist. 

The conditions for the existence of a quasi
resonance can be obtained quasi-classically start
ing from the condition that as E ->""the argument 
of the cosine in Eq. (14) approaches ( 2n + 1) 1T. 

Thus, for a potential with 1/01. « R we obtain: 

This is in-excellent agreement with the exact 
solution. 

(26) 

It should be pointed out that for a washed-out 
boundary having 1/01. rv R the agreement is poorer. 
However, for calculations, especially when the 
nucleus is heavy (i.e., 1/0I.<R), the quasi
classical conditions can be used. 

5. COMPARISON WITH EXPERIMENT 

The data on inelastic scattering cross sections 
for energies of a few million volts are relatively 
meager. Moreover, at energies less than 2-3 mev 
the number of nuclear levels that can be excited 
is small, and therefore, especially in the case of 
magic nuclei, the decomposition of the intermediate 
nucleus can go by way of elastic scattering. 

We have used the data of Pasechnik 7 on the 
inelastic scattering of 2.5 and 4.3 mev neutrons. 
In order to compare the theory with these experi
ments, the absorption cross section was cal
culated for neutrons of these energies as a func
tion of nuclear radius. In this an exponential form 
of the bound~ e -OI.r was assumed with 1/01. 
= 1.45 x 10- 13 em. The depth of the well was 
taken as 20 mev; however, the picture is little 
changed even if V (0) = 40 mev. At E = 2.5 mev 
the absorption coefficient V ( 0) t;; was taken as 
0.053 V(O); atE = 4.3 mev the absorption coef
ficient was taken as 0.05 V (0) and 0.11 V (0). 
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FIG. 1. Depen~ence of the inelastic scattering cross section 
on the nuclear radius for 2.6 mev; (; = 0.05. The continuous 
curve was computed for the model with diffuse boundaries, the 
broken curve for the model with sharp boundaries; the experi-

mental points are marked by circles. 

Figure 1 shows the results o£ the calculations 
of the absorption cross section a/11R 2 as a func
tion of R = r 0 + l/ a. (solid curve). There are also 
presented the results of a calculation using a·model 
with sharp boundaries and the same values of' 
V and (; (dashed curve). The circles denote the 
experimental points of Pasechnik, obtained using 
a threshold detector (Al). For these the nucle~ 
radius was taken equal toR= 1.25x10-13A 113 

As is seen the absorption cross sections £rom a 
model with a fuzzy boundary are about twice as 
large. as those from a model with sharp boundaries. 
Also, the maxima 'are rather weak (the ratio of 

5 

eross sections at maxima to that at minima is 1.3, 
whereas on the model with sharp edges this ratio 
exceeds 2 ). The experimental points scatter on 
both sides of the curve with fuzzy boundary. The 
magic nuclei have not been included in the data 
presented, since for these the inelastic scattering 
cross section is small because of the smaU!number 
of levels available. The point for Zn is quite a 
bit off, its experimentally determined cross section 
being too high. In general, the dataat/2.5 mev are 
less sensitive for comparison with theory than are 
the data at 4.3 mev. 

Figure 2 shows the results of calculations for 

z 

7 I 

FIG. 2. Dependence of the inelastic scattering cross section 
on the nuclear radius for 4.3 mev. The continuous curves were 
computed for the model with diffuse boundaries, the broken 
curves for the model with sharp boundaries; the experimental 
points are marked by c:ircles. For curve 1, (; = 0.1, for the 
other curves, (; = 0.05, 

4.3 mev neutrons. The solid curves give the a-oss 
sections for nuclei with fuzzy boundaries for the 
two absorption coefficients 0.05 V(r) and 
0.11 V(r). The dashed curve corresponds to ab
sorption cross sections for nuclei with a sharp 
boundary and (; = 0.05. For comparison there are 

given the experim~ntal points of Pasechnik using 
R .. 1.25 x 10-13 A 1 / 31 em. As is seen these points 
agree better with a curve for (; = 0.11 than with the 
curve for (; = 0.05. 

Thus, the experimental data indicate that the 
mean free path for neutrons of low energies is 
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large (of the order of 2 X 10·12 ern), but that it 
rapidly decreases with increasing energy. 

The nuclear model with a fuzzy boundary makes 
possible the reconciliation of nuclear radii ob
tained from other experiments (scattering of fast 
electrons) with those obtained from neutron cross 
sections. On the other hand, the model with sharp 
boundaries, even with a large absorption coef
ficient, gives cross sections equal to 1-1.277 R 2 , 

which by comparison with experimental data leads 
to very large radii: R = 1.6 x 10·13 A 1 13 • These 
are in sharp disagreement with results fromall 
other experiments. 

The maxima in absorption cross sections as a 
function of radius disappear in the model with 
washed-out boundaries at an energy of about 5 mev. 
At larger energies the absorption cross section is a 
monotonic function of the radius. The available 
data on inelastic scattering at E = 14 mev are not 
in contradiction with R = 1.25 x 10·13 A 113 , except, 
for possibly the lightest nuclei. In this case the 
mean free path should be of the order of 3-4 
x 10·13 em, i.e., the nucleus should he black for 
waves with l < kR. 

In contrast with absorption cross sections, the 
total cross sections will have maxima and minima 
for all values of l for which the nucleus is black 
because the phase of the scattered wave changes 
depending on R and E. 

CONCLUSIONS 

We have proposed a method of modulated spherical 
waves for studying the scattering of neutron~. This 
method, for V (0) < E appears to be a generalization 
of the quasi-classical method. 

In contrast to the usual quasi-classical approach, 
the proposed one satisfies exact boundary condi-

ti~ns. 'Higher approximations can easily be ob
tamed, and thus a limiting transition to the exact 
phase analysis solution of the problem can be ob
tained. 

The interaction cross sections of neutrons in all 
energy regions can be des::ribed using a model with 
fuzzy boundaries. 

When E > V (0) there is obtained a simple explana· 
ti'on of the maxima in total cross sections and 
likewise, of the deviations of total cross sections 
from 277 R 2 • At low energies the absence of sharp 
maxima in the absorption cross sections as a func
tion of radius and energy, which are obtained from 
a model with sharp boundaries, is explained. Like
wise the values of the cross sections are recon
ciled with the values of nuclear radii obtained from 
other experiments. 
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