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T HE probability of excitation of the rotational 
states of a nucleus during o:.-decay of hea'lly 

nonspherical nuclei was calculated in the Refs. 1,2 
in both of which the rotation of the nucleus was 
assumed to be slow compared to the motion of the 
o:.-particle (adiabatic approximation). The question 
whether this approximation is applicable was not 
really considered in either of the two works. In 
the case of even-even nuclei, where the moment 
of the total system is zero, it is possible to de
velop a theory which is not based on the adiabatic 
approximation. 

The Schroedinger equation of the system o:.-par
ti cle +the deformed nucleus is 
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where the independent variables are the angle co
ordinates of the residual nucleus and the c~ordi
nates of the o:.-particle relative to the residual 
nucleus (vector r). The transformation of the Ham
iltonian into new variables is most easily done by 
takinsthe corresponding classical Jl'Oblem into considera
tion. In Eq. U), V(r) is the interaction energy of 
the o:.-particle with the residual nucleus; I and 
lx. are the operators of the projection on th~ xth 
axis of the full moment of the system and the 
angular momentum of the o:.-particle (the axis of 
symmetry of the residual nucleus is chosen as: the 
Saxis); I is the moment of inertia of the resi-
dual nucleus about the ~and TJ axis (/ S = 0). 
The operators /x. and l)j.' commute with each other, 
the operator lx, acts only on the variable r: 
l~ =- i'li ("!Ja I a~-~ a 1 a"IJ) etc. Taking into ac

count that the result of the operator lx. acting on 
the wave function of spin 0 vanishes we shall find 
the equation for 'F1=0 (r) : 
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{- (li2 12m) t!.r + V (r) + Ji212 /21} o/0 = G;'lf"0 (2) 

(the_ operator lt can be omitted as its eigenvalues 
vamsh). Equation (2) does not contain the vari
ables 11; the wave function corresponding to spin 
Odependsonly on the relative coordinate of the 
o:.-particle. This result is fully understood, since 

the wave function of spin 0 should be invariant with 
respect to rotation of the coordinate system. 

We shall develop the wave function 'P (r) in a 
series of Legendre polynomials: 0 

·'Yo (r) = ~~ oc1 G1 (r) Y21 + 1 P1 (cos.&), (3) 
(even) 

G1 (co)'""' r 1 exp {ik 1 r}, 

where .& is the angle between the direction of the 
vector rand the axis of symmetry of the nucleus. 
In the region outside the sphere of exit of the o:.
particle emerging from behind the barrier, the po
tential V(r) practically does not differ from the Cou
lom? potential. In this region, the functions G 1 (r) 
fulfill the usual radial equation with energy 21 = 

2 - E 1, where E1 = 1i21 (I + 1) 2J i~ the 
energy of the rotational state of the daughter nu
cleus with spin /'=I, k 1 = V 2mG;'z n. . We 
note that in the ext~rnal region, at not too large l 
l [l <R 2Ze2 I 1iv (oo)] , one can neglect the de-pen-
dence of radial function on l, so that the angular 
dependence of 'P 0(r) is the same on the surfa~e of 
exit from behintl the barrier and at infinity. The 
probability of formation of the daughter nucleus in 
a rotational state with spin I'= l i~ proportional to 
I ;x-zl ~* · _Con;parison with the observed intensity 
dtstnbutiOn m o:.-spectra of even-even nuclei with 
4.? 230 <Ref. 3) gives the following values for 
the absolute values of the coefficients o:.1: 

1 OCo I = 1, I oc2)2 z 0.33, I oc4 12 z 0.003. 

The case of Re o:.2 > 0 corresponds to an elongated 
nucleus (the absolute value of 'P (r) has a m~ximurn 
f?r 3"' 0, ~ a~d consequently the 0predominant direc
tion of emissiOn of the o:.-particles coincides with 
the axis of symmetry of the nucleus); the case 
when the real part of o:.2 < 0 corresponds to a flat
tened nucleus (I '1"0 (r)l is greatest for.&= 17/2). 
Under the assumption that the coefficients o:. are 
real, it is possible to find, from the known a~so
lute values, the width of the angular distribution 
of o:.-particles on the exit sphere- from behind the 
barrier. The given values io:.11 yield for the width 
I'P 0(r)i the values of 100° and 88° for the elongated 
and the flattened nucleus respectively. The dif
ference of the anguh'\r distribution width for the 
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elongated and for the flattened nucleus is relatively 
small, and, as it will be shown below, is beyond 
the accuracy of the adiabatic theory. It is the~e
fore impossible, on the basis of the adiabatic theory, 
to distinguish elongated and flattened nuclei from 
the observed intensity distribution, contrary to the 
claims maintained in Hef. l.** In order to establish 
an actual relation between the angular distribution 
on the exit sphere (and consequently the intensity 
distribution in a.-spectra) and between nuclear para
meters, it is necessary to solve the Schroedinger 
equation (2) within the barrier region. We shall 
limit ourselves here only to the estimation of the 
nonadiabatic correction. 

In the quasi-classical approximation, the Hamil
ton-Jacobi equation (4) corresponds to Eq. (2): 

1 2 1 (a<; )2 
2m (VS) + 21 a-& =~-V(r), (4) 

The last term on the left-hand side we shall con
sider to be a small perturbation. Equation (4) 
(without the perturbation term) is the usual Ham
ilton-Jacobi equation of the adiabatic .approximation. 
Let 50 be the action function in the adiabatic ap
proximation. Putting S = S0 + S', IS' I <t I So 1. we 
get the following equation for S' 

(5) 
= 0, where V0 = m-1 VS0 

with the boundary condition S '= 0 on the surface 
I of the nucleus. The solution of Eq. (5) ful
filling the boundary condition is 

r 

I • \ 1 1 ( a So ) 2 

S = l j Vo ll a-& d"A. (6) 

r, 

The path of integration is taken along the imper
turbed traiectory, starting from the point r 0 on the 
surface I. In the ord~r of magnitude this integral 
equals (L I v0 ) ('nifi 1 2}), ; th~ term added in , 
the exponent in .Eq. (4) is of the order of w0 Ti2, 

where L is the length of the path of the a.-particle 
within the barrier, T = L 1 p0, w0 = 1L 1 '21, , and 
7 is the mean orbital moment of the a.-particle 
within the barrier. In order to make the correction 
more exact, we have to consider the actual action 
function. As an example, we shall take the case 
of the elongated nucleus. For a sufficiently large 
deformation of the nucleus it is essential to assume 
t_he existence of small angles, for which the action 
function can he written 

S0 :::::--ilL (a (r)- b (r) -&2 ), b > 0. 

The correction to the exponent, calculated for 
such an action fmction, amounts to (i j"li) S' 

(7) 

= 4w0 Tb-2 -&2• As was to be expected, the fact that 
the rotation is not adiabatic broadens the angular 
distribution of a.-particles; be££ = b- 4w 0 Tb"2 • 

The probabilities of transition into higher rotational 
levels decrease correspondingly. The non-adiabatic 
correction may be very essential. Thus, for L = 
3 x 10" 12 em, tL~ 1 21:::::: 7 kev and the adiabatic 
value of b '""5, the correction is only slightly 
smaller than the main effect. The large value of 
the width of the angular distribution, found from the 
intensity distributi~n in a.-spectra, is explained by 
the fact that the rotation is not adiabatic. 

Remctrk added during proof: We have, together with G. 
A. Pik-Pichak, calculated the effective angle of eiJ!~S-
sion & * of a.-particles (of the angular width / tp0 ( p) j) 
by numerical integration of the Eq. (4) for small angies 
of emission in elongated nuclei, If the deformation is 
not too small, & * does not depend to a gre'!J: ixtent on 
it. Thus, for the case of the cx.-decl!J of U 3 , &* 
changes from 65° for alb = 2.4 to 80 for alb = 1.24. 
These values are close to the "experimental" value 
("-' 1000). This weak'dependence on the deformation of 
the nucleus may possibly explain the fact that the in
tensity distribution of the fine structure lines connected 
with the rotational levels is almost constant for all nu
clides which are not very close to the doubly magic 
Pb208, 

* Wi~h. an accuracy to terms of the order of E z/ g 
In additiOn, we neglect a small imaginary increment to 
the energy of the system. 

** A straightforward answer to the question of the 
sign of the deformation (the sign of the quadrupole mo
ment) can be obtained from the study of the ex.- y angu
lar correlation 4 • 
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