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The Fourier method is used to obtain expressions for the components of the electro
magnetic field and for the total energy losses of a charged particle moving in an optically
active anisotropic medium. 

I THE passage of a charged particle through an 
• optically-active anisotropic medium is char

acterized by many features. First, to satisfy ~he 
conditions for the Cerenkov radiation the -mov mg 
charge need have a consider.ably l.ower v~locity. in 
an anisotropic medium than m an IsotropiC mediUm, 
because the index of refraction of the waves be
comes large at certain definite frequencies.Second, 
if a charge moves in an active anisotropic medium 
with a unifocm velocity greater than the phase vel
ocity of light in the same medium, the light emitted 
by the charge is more complicated in nature as 
compared with the isotropic case. Instead of the 
single circular cone of rays observed for the iso
tropic body, we have in the active anisotropic case 
two noncircular cones of rays, with the radiation 
intensity varying on different generatrices of these 
conical surfaces. 

The electrodynamics of anisotropic media was 
developed in the investigations of Ginzburg 1 who 
examined in particular the emission from an e:lectron 
moving in a uniaxial crystal and from an oscillator 
placed in such a crystal. The problem of the en
ergy losses of a charged particle moving in an aniso
tropic medium was subsequently treated in several 
investigations 2" 5 • The work of Ref. l was gener
alized by one of the authors for the case when the 
medium is optically-active (gyrotropic) in addition 
to being anisotropic. 

This article employs a method different from that 
used in Ref. 3 to determine the components of the 
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(U.S.S.R.) 24, 167 (1953). 
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electromagnetic field and the total energy losses of 
a charged particle moving in an optically-active 
anisotropic medium. The question of the singular
ities of the expressions obtained in Refs. l-5 for 
the losses is discussed, and a computation method 
that does not lead to singularities is given. 

2. The electromagnetic field produced in a medium 

in which a point charge q moves at a velocity v is 
given by Maxwell's equations: 

rotE = - -1 aH · (l) 
c at · 

1 ao 47t , 
rot H = --+ - q v r, (r - vt) · c at c , 

div H = 0; div D = 4r-qo (r- vt). 

We shall solve this system using the Fourier method 

E (r ,t) = ~ ~ E (k, w) eikr-iwtdk dw (2) 

etc. Using the connection between the Fourier 
components of the induction and of the field inten
sity 

we obtain the following equation for the Fourier 
components of the electric field intensity E(k,w) 

T c q V· ( 
ii<L/( ==c - i- -' r .!!__ .. Jj" (4) 

:!11:" w" ~ c x, Vi -. ' 

where 

Using the inverse tensor T i-kl , we can represent 
the solution of Eq. (4) in the following form: 
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E·=-i-q-Th-1v·o(~x·v·--l) (6) " 27t'w2 t t C I I . 

To calculate the energy losses of a moving 
charge we employ the relationship 

- d[) / dl = - (q / v) (vE)r=vt' (7) 

where the value of the field is taken at the point 
where the charge is located. Using (6) and (2) we 

obtain the following value per unit path for the 
total energy losses due to the remote collisions: 

d£ . q2 
--=t--

dl 27t~'ll 

(8) 

cc km 

X~ ~ ~ Tki1vkvia(; xivi-1Yw~k2dkdo. 
-oo 0 47t 

To obtain the components of the inverse tensor it 
is necessary to divide the minors of the correspond
ing elements of tensor T ik by the determinant con
sisting .of its components. This determinant 
equals 

are the ordinary and extraordinary index of refrac
tion and e is the angle between the optical axis 
of the crystal and the propagation direction k of 
the wave. 

Equation (8) is a general expression for the 
energy losses of a moving particle. Let us apply 

The integration with respect to k must be carried 
out up to a certain maximum value km of the order 
of magnitude of l/b, where b is the minimum param
eter of the remote collisions. 

3. Let us apply the equation obtained to the 
motion of a charged p .. uticle in an optically-active 
uniaxial crystal having a dielectric-constant tensor 
of the following form: 

I 21 - iE 2 o, 
E;h = ( iE2 El ~) (9) 

•.0 0 -3 

In the case under consideration the tensor T ik is 

defined by the matrix 

(lO) 

(ll) 

T = (c1 sin20 + c3 cos20) [n2 - ni (b)] [n~- n; (b)], 

where 

this equation to the two simplest motions of a 
particle, along and perpendicular to the optical 
axis of a crystal. 

(12) 

4. In the case of a particle moving along the 
optical axis, we orient the coordinates as in Fig. 
l. In this case Eq. (8) takes the following form: 

oo 11 mrc 
dcfl _ . q2v \' \' ·· n4 cos2 6- n?ti: 1 (1 + cos2 6) + e:~- .. ; 

- dz - t "'J .l .i ~ (ti:1 sin2 6 + ti: 3 cos2 6) [ '72 - n2 (6)] [n2 - n2 (0)] 
-00 () 0 1 2 

(13) 

X o (n~ cos fJ - 1) sin fJ d0n2dnwdw, 

where k is replaced by a new variable n = kc/w. 'fhe delta function yields the integral with respect 
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to the angle variable , while the integration with 
respect ton must be restricted to a region from 

where 

1/{3 to nm=kmc/w. The integration yields 

(14) 

ni,2 = {(z~- zi + s1s3) ~ 2 - (zs- :::1) ± [(si- si- s 1s 3) 2 ~1 (15) 

- 2s1 (si-s;+ si) ~2 + 2s3 (2si + s~W+h- E1) 2 ]'/•} /2s 1~2 , 

are the values of the indices of refraction in the 
direction of the emission maxima, determined by the 

following equations: 

cos2 01,2 = 1/ ~2ni,2 (61,2). 

It is evident that the energy losses of the moving 

where the integration is carried out in the first two 
terms over the frequency regions defined respec
tively by the following inequalities 

n!~2 > ni~2 > I; n!~2 > n;~2 > I, (16) 

(integration over the regions defined by Eq. 16). 

charge will be caused by the frequency regions in 
which the arguments of the logarithms become 
negative, and also by frequencies at which the in
tegrands have poles, for it is only in these cases 
that the real part of (14) differs from zero. We 
thus have 

and in the third term the summation is over those 
frequencies wi, at which f 1 , f 2 , and.f 3 vanish 
simultaneously. Substituting the explicit expres
sions for n f and n 22 we obtain finally 

(1 7) 

This expression determines the total energy losses 
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of the particle, including both the polarization and 
the Cerenkov losses. Let us note that Eq. (4.5) of 
Ref. 3 leads to the same expression for the inte
gral of (1 7), which determines the Cerenkov losses. 
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5. To clarify the character of the losses given 
by (1 7), let us compute the energy flux through a 

where k 1 ,; =(:u/v)2 {l-{3 2 n 2
1 , 2 ), and ni, 2 are 

given by (15). . 

00 

H,(r, t) =- iqc" \ 
1tV J 

-co 

cylindrical surface surrounding the trajectroy of 
the charge. For this purpose we shall first deter
mine the field produced in an optically-active 
anisotropic medium by the motion of a point charge. 

Inserting Eq. (6) into Eq. (2), and using the known 
relationships 

2'11: 

~ eixr cos& d-3- = 2"1 0 ( xr); 
0 

00 

\ / 0 (xr) xrix = J(. (k )· 
,) x2 + "" o r , 
0 

Rek>O, 

we obtain the components of the electric field 
intensity in cylindrical coordinates as follows: 

(18) 

For the magnetic field intensity we obtain analo
gously: 

(19) 
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The optical activity of the medium results i[n an 
electric field intensity component Eq; and in 
magnetic field-intensity components If z and H r 

which are lacking when a charge moves through an 
inactive medium. 

Using the Poynting theorem, we now determine 

If L ( and ( have no zeros in common, the real 
< 1' 2' 3 

part of the expression just obtained will he made up 
of contributions from only those frequencies at 
which k 1 and k 2 are imaginary. Noting that in the 

case of imaginary k we have 

k* K1 (rk•) Ko (rk)- kK1 (rk) Ko (rk*) = irr/2, 
• 

the losses due to Cerenkov radiation assume the 
following form ( compare with Eqs. (16) and (1 7) J : 

(22) 

The second term of (22) diverges logarithmically. 
This is because we obtained the fields E ( r.,t ) by 
integrating with respect to k from zero to ~nfinity, 
while macroscopic electrodynamics is not valid for 
k - <Xl, It is evident that in (22) one is restric:ted to 
the frequency region f3 2 n~ > f3 2n; > l. 

The total losses (taking the near collisions into 
account) in an isotropic medium are known to he 
independent of the parameterJkm"" 1/b. This parameter 
which enters logarithmicaliy into the expression tor 
the losses in the case of near collisions, and which 
also enters into the expression for the polarization 
losses that account for the interaction between the 
moving charge and the longitudinal field, cancels 
out in the final expression. In an anisotropic me
dium the losses in the case of near collisions are 
the same as in the isotropic medium. But now the 

the quantity of energy radiated by the charge per 
unit path 

00 

_ d<fJ = ~ \ (Eu;Hz- EzH cp) 2'-rdt. (20) 
dz 47t J 

-00 

Inserting Eqs. (18) and (19) into Eq. (20) we obtain 
through simple transformation 

(21) 

parameter k enters logarithmically into the ex
pression formthe losses due to the radiation of the 
extraordinary waves, which are also longitudinal 
in the case of n ; -ro. Thus in an anisotropic 

medium the total losses, taking the near collisions 
into account, are also independent of the undeter
mined parameter k . 

m 
6. If a charge moves along the axis of an inac-

tive ( i 2 = 0) uniaxial crystal, expression (l 7) for 
the los~es is considerably simpler: 

(23) 

q2 (' ( 1 ) + 7 J [3'~, - 1 (j) d(j) 

!u {1 + k;,:2 (2)t 
w. \ ~" ,J 

1 <> 

( the second integral is taken over the region 
n ~ f3 2 > ( £3 h 1) ( {32 i 1 - l) > 0 and {32 i 1 < 1, 

while wi are the common zeros of c 1 and i 2 ). Ex

pression (23) is identical with those obtained in 
Refs. 2 and 3. However, thanks to inequality n,; {3 2 > (c3ft: 1 ) ({3 2 c1 -1}, the boundaries of the 

frequency regions, over which the integration is 
carried out, are so shifted that expression (23) con
tains no singularities. If c 1 and c2 have no com
mon zeros, the third term of (23) drops out. In this 
case, making the transition in the limit to the 
isotropic medium ( c3 -£ 1 ), the second term of (23) 

reduces to the ordinary expression for the polari
zation losses. 



MOTION OF A CHARGED PARTICLE 415 

In the case of the simplest gyrotropic medium 
(c 1 =c3 ) the equation for the losses becomes 

(cf. also Ref. 3): 

(24) 

_, (D k2 2 
, q- "'\' i I ( l mV ) 

-r v'l LJ -, ds fd-;;;--j. n \ + -2- · 
'l 1 t ' (j)i 

The summation extends over all frequencies at 
which E" 1 and E" 2 vanish simultaneously. If c 1 and 

E" 2 have no common zeros, the total losses are 

determined by the first term of (24). The integra
tion in (24) is carried out over the frequency regions 
defined by the inequalities 

2 r.:;2 -> l(') 2 2) (.! + -v-4 0~ •• •• nmp -"1 -- :2 IJ -- 22 21 + :J·c;;] p"/2: l~ > I. 

Expression (24) contains no singularities in the 

Assuming for simplicity that E"l' .: 2 , and E" 3 have no 

common zeros, we obtain finally the following 

(integration with respect to dw in the regions de
fined by Eq. 16). The upper sign of(26)corresponds 
to losses due to the radiation of the ordinary 

indicated frequency region. 

7. Let us consider now a charge moving per
pendicularly to the optical axis of the crystal. 
Choosing the coordinate system shown in Fig. 2 
we obtain: 

xl = sinil-costf; x 2 =cos&; 

x3 = sin & sin cp; kv = kv cos il. 

Let us determine the component of the inverse 

tensor T 2; 1 , substitute it into Eq. (8), and inte
grate (8) with respect to the angle a . As a result 
we get: 

(25) 

equation for the total energy losses: 

(26) 

waves, and the lower to those of the extraordinary 
ones. The conical surfaces for the ordinary and 
extraordinary waves are complicated in form (ex-



416 A. G. SITENKO AND A. A. KOLOMENSKII 

----- k 

FIG. 2 

I 
I 
I 
I 
I 

zJ I v 
-y 

hibit a dependence on the angle cp) and the intensity 

The second integral is taken over the region 

n~n~2 > [~2E1E3 

varies on the different generatrices of the conic 
surfaces. 

In principle, it is possible to carry out the inte
gration in (26) to the very end, provided the com
ponents € 1 , € 2 , and €3 of the dielectric tensoc are 

given as the functions of the fre guency. 
If € 1 = € 3 , Eq. (26) becomes identical with the 

result of Ref. 3, provided the integration limits are 
changed in that reference in the manner shown 
above. In the limiting case of an inactive uniaxial 
crysta.l (fr= 0) we obtain the corrected Ginzburg 
equation : 

(27) 

In conclusion, we thank Prof. A. I. Akhiezer for 
interest in the work and for evaluation of the re
sults obtained. 
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