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!he scattering of charged particles is considered intheenergyregion V(rr) /e << In (E 1m)<< 77 j e 2 ./ 
It IS shown that the cross section for· electron-electron scattering with arbitrary radiation 
dees not differ from that given by zero-order approximation. For the positron-electron 
scattering the cross section is changed in the region of small angles. This change is deter-
mined by solving an integral equation. 

I N two previous papers 1 •2 we have discussed the 
scattering of an electron by an external field and 

the Compton scattering at energies in the region 
y;;e ~ln(Eim) <{;;rcje2 • This revealed the 
following situation. The alteration in the cross 
section for the scattering by the external field and 
for Compton scattering is such that the reduction 
in the cross section for the basic process, without 

the emission of additional quanta, is compensated 
by an increase in the cross section for processes 
with multiple emission of additional hard quanta. 
The total cross section for processes with arbi- , 
trary emission is still given by the zero-order 
approximation. In the case of the Compton effect2 

however, it was disc overed that, in addition to the 
effect just described, there is a change in the 
angular distribution for small angles, which is not 
compensated by the inclusion of processes with 
additional radiation. The angular region in which 
this happens is so small that the change does not 
affect the total cross section; however, the forward 
scattering may change appreciably. 

In the present paper we examine the scattering of 
charged particles by each other. We shall not be 
interested in the amount of radiation emitted in the 
course of the scattering, i.e., we shall determine 
in practice th8 sum of the cross sections for the 
processes involving the emission of one, two, &c, 
real quanta. As we know from the previous 

1,2 h . . papers , sue emisswn processes are compen-
sated in a generalized graph by integrals over the 
momenta of the virtual quanta, taken over the 
region k 2 = 0, Here we consideli only the possible 
change in the cross section not relating to any 
real emission. 

1. BASIC DIAGRAMS 

The basic diagrams for single electron-electron 
scattering in zero approximation are shown in Fig. 
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l. Consider first the question of virtual quanta 
with k 2 = 0. We shall show that these are compen
sated by the effect of corresponding real quanta. 
For this purpose we consider one of the generalized 
diagrams for the process in question, e.g., the 
one shown in Fig. 2, a. In Fig. 2, b we show the 
different types of virtual lines, and the real ones 
which cancel them. Each type islabeledby a 
number, and the corresponding real line by the 
same number with a prime. The proof of this 
cancellation to order e 2 , i.e., for only one line, is 
extremely simple. For the general case the proof 
does not differ materially from that given in Ref. 2. 

There is only one point worth noting. The 
electron-electron scattering differs from the Comp
ton effect in particular by the presence of two 
fermions, and this can, in general, affect the cal
culation of the spinor numerators. (An example of 
this will occur below). However, here this fact 
makes no difference at all. Indeed, consider, for 
example, line 2 in Fig. 2, b. Its spinor numerator 
(multiplied on the left by p 1r2 and on the right by 
1\ " ...... ,.. q 1 q 2 , where p 1 and q 1 relate to the first, and 
I' d,._ d • A A p 2 an q2 to the secon electron, I.e., pl' q1 

commute with p 2 , q 2 ) is of the form 

(plr .. (pl- k}r)Jr)(P2r .. (P2 + k)r)J2) 

~ <Pllp.Pli)I) <P2rp.P2rJ12) 
~2( " A A A 

'""' P1P2) (Pllvql) (p2ivq2), 

i.e., of the same form as in zero-order approxima
tion. The same can be shown for any number of 
virtual lines with k 2 = 0. 

Now consider the possibility of a change in the 
cross section which is not compensated by the 
emission of real quanta. From Ref. 2 it is evident 
that such a contribution can come only from lines 
of type 2 or 3 ( Fig. 2, b). Assume there is one 
virtual line of type 2. In that case we have in the 
denominator of the matrix element the expression 
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(PI- k)2 (p2 + k)2 k 2 (l- k) 2 • In the numerator, 

" " on the other hand, we have the spinors p 1 -k and 
A A 

P 2 + k. By comparison with Ref. 2 we conclude 
tliat the appearance of the terms for which we are 
lookingrequiresthat \(pl,ql)\ >> \(pl,p2)\. 
It is easy to see that this is impossible. Indeed, 
consider the scattering in the centre-of-mass 
system ( Fig. 3). We see that 

(PIP2) = E2 + P2 = 2£2 , 

Now assume there is one line of type 3. Then 
we require that 1 (p1q1) 1 ~ 1 (p1q2 ) I. This may 
happen, since in th.e center-of-mass system 
(p1q2) = t_2 _ p2 cos 0', which may be much 

less than p l • q l ' if the angle e, is small enough, 
i.e., if in the center-of-mass system the scattering 
is backward, Nevertheless this effect is not 
observable. Indeed, besides the diagram l, a 
which we have considered, there is also a contri
bution from diagram l, b. In view of the fact that 
the contribution from any diagram is essentially 
of the order z- 2 ' where l is the momentum of the 
photon which is transmitted from one electron to 
the other, the diagram l, b gives the dominant 
contribution when (p 1 q2 ) / «;:: I (p1q 1 ) I , and 

this diagram does not give the term we require. It 
would do so in the opposite case, but then the 
diagram l, a is dominant. We conclude, therefore, 
that owing to the possibility of electron exchange 
the expression for the electron-electron cross 
section is given correctly by zero-order approxima
tion in the approximation considered here. 

The situation is different in the case of posi
tron-electron scattering. There there is no exchange, 
because the two particles are distinguishable, and 
the effect we are looking for may take place. 

The basic diagrams fer this process are shown 
in Fig. 4. In this case, as in the previous one, a 
term of the required kind will appear in Fig. 4 
from a virtual line of type 3 ( Fig. 2, b) if 
P 1 • q 1 > > p 1 • q 2 . But, contrary to the previous 

situation, diagram 4, b cannot mask this effect, 
since, according to Fig. 3, p 1 , p2 is the largest of 

all the scalar products of momenta. Therefore 
diagram 4; b will, first, be of the same order as 
4, a, and second, will itself give a contribution 
of the required kind. 

The conservation of four-momentum requires that 

(1) 

Hence, we may obtain the following equality for 
the scalar products (remembering that the squares 
of all vectors p and q are negligible) 

(plql) = (pzqz) = (PzPI)- (p2ql) (2) 

= (PzPI)- (plq2). 

It follows from this that if (p1q2 ) ~ (p1q1) (p1q1) 

=(PtP2), i.e.,l 2 ,-l'2• 

It should be pointed out here that in the diagram 
4, b it is possible, in principle, to find a contri

bution of the required type from a line of type 2, 
provided p 1 • q 1 <<p 1• q2 • However, in that case 

diagram 4, a will dominate, and this does not give 
any such contribution. Thus an interesting con
tribution can come only from virtual lines of type 
3. With the help of this result we shall now deter
mine the matrix element for positron-electron 
scattering. 

2. THE MATRIX ELEMENT FOR POSITRON
ELECTRONSCATTEIDNG 

In analogy with Ref. 2, we can determine the 
matrix element by setting up an equation which 
gives the sum of all diagrams shown in Fig. 5. 

Whereas in the previous case 2 the equation could 
immediately be replaced by a direct summation, 
here it gives much the simplest way of finding 
the matrix element. This is connected with the 
fact that we are now dealing with two electrons. 
Consider first the diagrams derived from 4,a. 
Taking account of the results of the preceding 
section, we find the equation for the matrix element 
in the form 

Mab, cd (p p · q q · l) = .,ab.(rdz-2 
J' 2' 1' 2' lp. p {3) 

+ e2 ~- [ • 1 'Ja.~ xb, yd • 
1ti 1.,. ~ • M (p1-k, Pz· 

· P1-k-m 

In this formula a and b refer to the initial and 
final states of the electron, and d, c , the initial 
and final states of the positron. (For the latter 
we take the four-momentum with the opposite sign, 

and the lines have to be followed in the reverse 
direction). 

Since the behavior of the matrix element M is in 
zero order given essentially by the factor z- 2 , we 
assume that M:: M'Z- 2 , where. M' is some slowly 
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ding lines in reference 2 • For this purpose were-
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FIG. 3 
polarizations, and cancel k 2 in the numerator 

ktrans 

varying spinor. In addition we carry out a trans

formation similar to the one used for the correspon-

against the same factor in the denominator, remem
bering the region l 2 uv >> (p l - q 2 ) 2 ' in which 
this is permissible. In the end, the equation takes 
the form 

JVl' a b, cd = 'Ya b.,.cd 

lp. '"" 

+ ,e2 • [jj]ax \ M'xb, yd (!?, P2; q,,q2- P1+k+q2; -ql+k) d4k 
2m P. v j (k2-m2)(pl-k)2(qi-k)2 

I 
tl=fJ.-fl 
I 1 7! 

~ 
FIG. 4 
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FIG. 5 

From this equation it is evident that M' must he 
a scalar product of two tensors, of which one re
lates to the electron and the other to the positron. 
These tensors are products of the y11 ; their rank 

therefore cannot exceed four. This means that any 
tensor of rank higher than four can he expressed in 
terms of tensors of lower rank, Since the only 
tensor which can in this case dispose of surpilus 
subscripts is o fi.V' the reduction in rank must 

always go in even steps. Examination of Eq. (4) 
shows then that M' may contain scalar products of 
tensors of first and third rank. Indeed, the tensors 
of fifth rank in the term with the integral can be ex
pressed in terms of tensors of first and third rank. 

We therefore write 

M'ab, cd - "ab . cdj + Tab . Ted j - (" 1f'- 1 f'-'t"V f'-7V 3, (5) 

where f 1 and f 3 are scalar functions and T11 7 ~, an 

antisyrnmetric tensor of rank 3, formed from the 

Yfl: 

TIJ.TV = 1/s (1u.'l.,"lv -11'-1;1-. -1-.1~ 1v 
(6) 

To find [ 1 and [ 3 we must, first of all, express the 

tensors y 11y,_,y7 and y gY.,,T {l'T'v which arise from the 

integral term in Eq. (4), in terms of y f1 and T f1 Tv' 

Bringing y to the left in each term of the expres
sion (6), vfe see that 

As regards the second combination, it is easy to 
see that, the most general form it can have is 

1~1TJTf'-"• = A (8TJIJ.T~,. -rTJ .. T~IJ.· + oTJ.T~'"""' (8) 

-o T +o T -o T ) 
~:J. TJTV /;T TJiJ'V ~V TJ"T 

To determine the coefficient B interchange 

Y gand y77 on the left-hand side. This leaves 

"C r" T = - ·r "' T + 2o T TJ ~ f'-'t"V 'I>J iJ''t"V ;;TJ ';-'t"V' 

On the right -hand side the terms with A and C 
then change sign, whereas the term with B remains 
unchangyd. Hence B = l. To find A and C we take 
the special case g= fl· and use Eq. (7) on the 
left-hand side. Displacing y f1 and equating the 

coefficients of T and of the combination nTv 
2 (T-.0vTJ- i)\TJ), we conclude that A= l, C = -l. 
The next step is to multiply the expressions which 
we have obtained. With the help of (7) we see 
that 

(1:.~."[-.jvtb (j:;:[.,-"(vtd = T~:,,r~~. + lOr~\~d. (9)' 

Using (8) and the values of the coefficients A, B, 
and C, we find 

(rf.rTJT.,. .. )ab (r~rTJTIJ. .. Yd (l 0) 

= 10 pb Ted + 36rabrcd. 
~"t'V IJ.'t'V 1.1. !J. 

We now substitute this result, as well as (5), 
in Eq. (4). If we assume, as in Ref. 2, that [1 and 

[ 3 depend only on a= ln[i2/(p1-q2) 2j , and 
remembering the region of integration, we obtain 
the following equations: 

(ll) 
a• 

36e2 \ + 161t' .l fa (x) dx, 
0 

at a2 

fa(a 2 ) = 1 ~: ~ ft(x)dx+ ~~~2 ~ fa(x)dx. 
0 0 

If we now differentiate with respect to a2 , we ob
tain two differential equations of first order. The 
boundary condtions are, according to (ll ), 
[ 1 (0)= l, [ 3 ( 0)= 0. The solution of the pair of 

equations with this boundary condition gives f 1 

and [3 : (12) 

f 1 =; [exp(:: ln2 ~:)+ exp(: ln2 ~2 )]. 
fa = 112 [- exp ( :; Jn2 ~2) + exp ( :2 Jn2 ~2·)] , 
where p= p 1 -q 2 • 
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If we insert these values for {1 and {3 in (5) we 

have the required expression for the sum of all 
graphs of the type 4, a. 

Now we would have to find an analogous ex
pression for the diagrams of type 4,b. However, 

this is unnecessary since the diagrams 4, b 
give exactly the same as 4, a. The minus sign in 
the denominator which comes from l '2 "' -l2 is 
cancelled h the fact that the contribution of the 

diagram 4, b has to be taken with the opposite 

sign. The only difference is that, in the diagram 

< t' 

-!'z 

b 

4, b the states ab, cd, are replaced by the states 
ad, cb. 

3. THE CROSS SECTION 

We now turn to the calculation of the cross 
section. The combined diagrams for this (giving as 
examples only the zero-order ones) are shown in 
Fig. 6. If we are not interested in the initial or 
final spin states of electron or positron, then the 
expression corresponding to the diagram 6, a is, 
apart from small terms ( we omit factors which are 
common to all diagrams): 

1 2 1\ .... " 1\ /4/1 Sp [N'(""q{(v] Sp [(- P2) Tv (- q2) 11'-1 (13) 

+ 11dJaSp fP1 T""-rvq]r~l Sp [(- P2h~ (- q2) T"".,) 
1 • A"A. A A + 14!JaSP IP1r~q~ TIJ.TVJ Sp [(- P2) T)).TV (- q2h~l 

+ 1/4/iSp [plT!mqlT~YJt.l Sp [(- p~) Tf.Yit. (- q2) T~'--rv]. 

To evaluate this expression we first find the 
basic spurs. One easily finds directly: 

1/4Sp rl\rl'-qlrvl = PlpqlV 
(14) 

+ Plvqlp.- (plql) 0)).v" 

The next spur is Sp[p1 TIJ.-rvq 1 "(~]. By means 

of equation (7), we can write this expression in the 

form Sp [ Tp.TvTTff>.) p 1.>.. q 1Tf. This can be 

explained by the fact that Sp [T~'--rvl~l = 0, since 
it is impossible to represent this expression in any 

other way in terms of 0-functionE. If we make use 
of the symmetry properties of the expression in 
question, we can write it a10 a corresponding sum 

of tensors, which contain p lp., q 1 p. and o p. v with 

unknown ,coefficients. Combining terms on both 
sides, and comparing coefficients, we find 

1/4Sp fpJ~-rvqlj!;] = (plvql-r- P1-rq1)'o,.~ (1 5) 

+ (pliJ.qlv- Plvqll'-) 0-r~ + (plTqliJ.- Plp.qlT) 0vf.' 

The last spur, lS 
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dealt with in the same way. As a result of this calculation we find 

1/4Sp [p1 TpTVq1 T;;1):d = (p1q1)('0,.,;o,/)v"A- o-c;;o'"1Jilv'-- op.;;o,'-llv1) + o,;llv1)a,.~. (16) 
+ o 0 o - o )l o ) + (p q + p q ) (o a - a 0 ) --L vi; TA u.1) '~ p.'A T1J lp. 1!; 1~ l"- V1J TA v). -c1) 1 

+ (plVql'f. + pli;qlJ (ll,1)oU.A- 0 p.1i\~,) + (pl'"Cql'f. + Pli;ql,) (0vA0p.1J- 0v1)ilp.) 

+ (Pl,.q11J + plTJqlJ (o,),o,r.- 0,~\~.) + (pl,ql1) + Pl1)q]J ( 13.,}.~.- a.~llu.~,) 

+ (pl,ql1J + pl1Jql,) (ov'f.0u."A- 0v:\01J.'f.) + (plpqlA + p!Aqlr) (o,f,i)T1J- 0v1J0-ri;) 

+ (pl,qlA + plAql) U\t;0u.1)- 0p:;0-c1)) + (pl,q!A + plAql,) (ov7]01J.'f,- 0vl;i}p7]). 

Now substitute (14) to (16) in (13). After some 
simple calculation we obtain the eocpression 

Here we have used the fact that P 1q1 ""p 2q2 "" P 1 P2 

>>PI q2 , so that we may replace p 2 by qi and 

q 2 by PI· 

Inserting now from (12), we have 

(l 7) 

We now proceed to consider the other diagrams 
of Fig. 6. Although the quantity l '2 , which enters 
into the denominator of part of the matrix element, 
equals -l 2 , there is a minus sign in ftont of this 
part. We may therefore regard the matrices in all 
cases as differing only in the order of factocs, and 
in the way the spurs are taken, but not in their 

signs or their denominators. Consider diagram 
6, b. It is easy to see that this differs from 6, a 
only by an interchange between qi and- p2 , so 

that it also contributes the expression (l 7). On 
the other hand, the diagrams 6, c and d give only 
small contributions, as one easily verifies directly. 
E. g. 

1/4Sp fPlr;2r)J2ru.(hrvl = - 1/2 riJ/J2ivlJ2q1rvl 
=- 8 (plq2)(p2ql). 

We now obtain the expression f6r the angular 
distribution at small angles. It is easy to see that 
all deviations from the well-known results are con
tained in the exponential factor. In the centPe-of
mass system we have 

e4d0. [2e2 2 J dcr = 41:2 exp 7t ln2 (rr: -e) (19) 

if /E m . ~'IT-IJ~'It/2, 

and 
d e4dO. [ 2e2 I 2 E J cr = 4Fexp --;- n m (20) 

• if 1t-IJ~m!E. 

In the second case the correction is connected 
with the fact that, for (pi- q2 ) 2 << m 2 occurs in 

place of (pi q 2 ). It is interesting that these 

results are very similar to those which were obtained 
in the investigation of the Compton effect. 2 

In conclusion I wish to express my gratitude to 
Academician L. L. Landau for discussions about 
this work. 

Translated by R. Peierls 
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