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A general formulation is given of the diffusion equation for a single particle, from which 
follow a number of well known equations as special cases. By way of application, the scat
tering of particles in a homogeneous absorber is considered. 

} A general formulation of the diffusion equation 
•for a single particle is given in the present 

paper. Other well known equations follow from it as 
special cases. The method applied in the present 
work is not here compared with other methods de
scribed in the literature; such a comparison will 
be given in a paper written by the author in colla
boration with L. Pal and A. Bekesy. At the end 
of the paper, an application of the equation which 
re~esents practical interest will be examined. 

The process of diffusion can be described by the 
function qf..A, U, t), where A= A1, A2, ••• , Ak are 
parameters which determine the state of the particle; 
in this case we do not limit ourselves only to such 
parameters which are strictly necessary for the de
termination of the state of the particle, but take in
to consideration other parameters, which depend in 
whole or in part on the rest; such parameters are 
included in order to determine their distribution. 
The vector U, which has the components U = U 1, 

U 2, ••• , defines the intervals of the components of 
A, and therefore, for each given state A, we can 
determine whether it lies within U or not. Finally, 
t denotes the time and cp the probability that a par
ticle, which is in the state A at the time t' = 0, is 
transferred at time t '= t into such a state A' that 

A' lies within U. (1) 

The choice of intervals U has no importance for 
the solution of the problem that has been posed. 
For many purposes it is appropriate to choose 
some or even all of the components of U to be infi
nitely .narrow. In the latter case we consider cpas 
the probability density relative to those components 
for which the interval is bounded in the fashion 

mentioned. In particular, if all the components of 
U are narrow, we have, in place of Eq. (1), 

A'= U. (2) 

2. We choose the time as an independent vari
able, since any other choice of independent vari-
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able leads to difficulties, about which we shall 
say something below. The quantity cpmust satisfy 
the following initial condition: 

where 

'1 (A, U, t = 0) =-o ~ (A, U), 

{
1, if A is within U 

~(A, U) = 0 in any other case. 

(3) 

In particular, if all the components of U lie in 
narrow intervals, then 

cp (A, U, t = 0) = o (A-U). (4) 

If we had not chosen the time as the independent 
variable, but, say, the x coordinate of the particle, 
then, in place of an initial condition of type (3) or 
(4), it would have been necessary to furnish a 
boundary condition for x. It is not possible to give 
such a boundary condition arbitrarily; thus, for 
example, the boundary condition of the type 

?(A, U, x = 0) c<~ (A, U) (5) 

leads to a contradiction. If the particle begins to 
move in the positive direction along the x axis, be
ginning from the point x = 0, then it can in general 
get back to the plane x = 0, while upon its return 
it can be shown to be outside of the interval U. 
The probability of such a case is always finite, 
although in many cases it can be small. Thus a 
condition of type (5) can be imposed only for a 
single instant of time; hence it follows that it is 
not possible to lay down (5) as a boundary condi
tion for an independent variable x. 

Although, strictly speaking, it is not possible to 
choose x as the independent variable, nevertheless 
in a series of cases, such a choice can be shown 
to be a suitable approximation. In these cases, we 
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FIG. 1 

neglect the eiTors which result from a possible ro
tation of the particle in the y, z plane from which it 
set out originally. 

It is also possible to consider the length of path 
l as an independent variable. The difficulties 
which arise in this case are less serious than those 
in the choice of x as the independent variable; 
nevertheless, even in this case there remains the 
possibility that the velocity of the particle will 
finally .reduce to zero. This leads to the appearan.ce 
of singularities if l is chosen as the independent 
variable. 

3. We consider the nature of the parameters A, 
while particular attention will he given to continu
ously and discontinuously varying quantities. 

1) As components of A we can consider such 
quantities as the energy of the particle E, the mo
mentum components Po.·, Pv, Pz, the velocity com
ponents, etc. Such quantities change their values 
only in collisions (in each case, in the absence 
of an external field). Between collisions. thes€ 
quantities remain fixed. In particular, it should 
he noted that the energy is often considered not as 
a continuously changing quantity rather than as a 
discontinuously changing one . It should he empha
sized that such a treatment is of necessity approxi
mate; ionizing losses are the result of many col
lisions, and in each collision, only a small part 
of the energy is lost. Thus the energy losses are 
discrete, and therefore we shall consider this pro
cess as discrete. Later it will he seen that, if we 
neglect certain small terms in our exact formula, 
we can obtain approximate formulas whtch result 
in the consideration of ionization as a continuous 
process. 

2). We shall consider the components of A which 
change in a strictly continuous way. As such 
quantities, we have, for example, the coordinates 
x, y, z of the particle and the length[. An important 
quantity of this type is the area S between the tra
)ectory of the particle and its projection on the x 
axis (Fig. 1). The tatter .quantities are not changed 
in a collision pwcess, hut change continuously in 
the interval between collisions. However, the 
derivatives of these quantities change discontinu
ously at the time of a collision. Thus, let 

A 1= v_,-, A~= Vy, A:l= x, A~= y, A 3= S 
(vx, vy are velocity components); then, between 
colliswns, A1(t) = A1(0), A 2(t) = A 2(0), 

A:l(t) = A:l(O) _LAI(O)t, Al(t) c=A 1(0) +A 2(0)i, 

A 3(t) = A~(O) + A:1(0)t -,-t/2A 1(0)A l(O)t~ 
(for O~t< t 1), where A k (t) is the value of 
the component A k at t:;: 0 , and under the con-
dition that up to t 1 > t no collision occurred. 

3). If external forces act on the particle, then 
such parameters as the energy and momentum will 
change continuously between collisions, and dis
continuously at collisions. A case of practical 
importance is the case of the deflection of a par
ticle under the combined action of a magnetic field 
and diffusion. 

In order not to introduce any limitations, we 
assume that, in general, 

Ak (t) = A\~>(0) + A)}\0) t + 1/ 2 A~l(O) t 2 + ... 
and consider all variables A/,1) as stochastic 
variables which can change or not change upon 
collisions. However, we assume that a finite (and 
generally speaking, small) number of derivatives 
of A~ 1 ) will give a sufficiently accurate approxi
mation*. 

In what follows, when the symbol A is used, it 
will he assumed that all components AA1) are in
cluded in it, and correspondingly, that the vector 
U includes all components which relate to all the 

A~l). The quantities A thus introduced are cer
tainly not all independent of each other· below 
we shall have to deal with the question' of the i~
clusion of certain of them in the course of the com
putation, hut initially, we shall not take into 
account the possibility of the existence of a depen
dence between the quantities under consideration. 

4). Variables which change continuously in ac
cord~nce with the laws of probability will not he 
considered. Such quantities are not met with in 
practice and their introduction would provide an 
unnecessary complication. Those quantities which 
arbitrarily change "almost" continuously (for ex
ample, due to ionization losses), can he success
f~l.ly considered as discontinuously changing quan
tities. 

4 •. In. order to write down the diffusion equation 
for cp It IS necessary to introduce the collision 
cross section. We define 

w (A (t), A") dA" dt (Sa) 

* The method developed here has been generalized 
by L. Pal; he has deduced the diffusion equation for 
cases in which A(t) is an arbitrary function of time, 
while not making use of the power series expansion. 
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as the probability that a particle, whose state at 
time t is described by the vector A(t), undergoes 
such a collision in the time interval t, t + dt 
that after the collision the particle is found in the 
interval A", A"+ dA ". It is obvious that 

dA" = ll dAh1l". 
h,l 

In place of A we write A(t), since the state of the 
particle changes even in the absence of a collision. 
llse of the vector A(t) denotes that all computed 
values of all essential time derivativesd1An(t)/ dt1; 

are considered; this is important because 
the instantaneous value of only one of the 
parameters does not sufficiently determine the 
state of the particle. 

Some of the parameters A),1l do not change ab
ruptly in collisions. We denote those quantities 
which do change abruptly by a, and those which do 

pot so change byb . Thus A= a, b; we can sepln'ate 
w (A(t), A") in the following manner: 

w (A (t). A")~~ ·w (A (t), a") a (b (t)- b" (t)), (6) 

where the o function is the product of o functions 
for each of the components b. 

The function w can depend on the value of b(t) 
as shown above, but the function b(t) cannot change 
in collisions. An example of such a case is scat
tering in an inhomogeneous absorber. In this case, 
the cross section depends on the coordinates,in 
spite of the fact that the coordinates do not change 
in the collision. It would have been possible to wite 
down the diffusion equation in terms of a regular 
w function, and thus avoid the application of o 
functions. However, it is rather complicated to 
divide A into the groups a and b; therefore we 
prefer to employ w and the o function. In order 
to avoid difficulties connected with the appli
cation of the o function, we can replace the actual 
o function by regular functions, e.g.,by the Gaus
sian function 

o(x) ,,_ (27Cs)-' 1'exp(-x~/2s), s>O. (7) 

where f is small but different from zero. Substi
tuting Eq. (7) in Eq. (6), we introduce an error 
which can be made sufficiently small if f is 
chosen sufficiently small. In fact, let us con
sider as an example, the x component of a mix
ture. In this case, the 'introduction of Eq. (7) 
in place of the actual o function is equivalent 
to the supposition that in each collision x 
changes discontinuously bv an amount of order 

100 h h c. If, for example, f"' 10 em, t en sue a 
supposition would undoubtedly have been allow
able, since it does not lead to any noticeable 

effect. The mathematical consequence of such 
a supposition, which does not have any physical 
consequence, is the possibility of considering 
w(A, A") as a regular function. 

5. We can now write down the diffusion equa
tion for w(A, U, t). We have 

9 (A, U, t) =--= 9o (A, U, t) + t 1 (A, U, t). (8) 

where Cflo is the probability that the final state 
within U ln'ises without a collision, and cp 1 is the 
probability that the final state within U arises 
as the result of one or more collisions. 

The probability of an absence of a collision in 
the time interva lfrom 0 to t' can be written as 
cp0 (A, t '); the probability of an absence of a col
lision in the interval between t' and t is expressed 
as r.p (A (t'), t- t'). Thus the probability that 
no collision takes place during the entire interval 
is equal to 

?o (A, t) = ?o (A (0), f') fo (A (t'), l- t'). (9) 

The general solution of E q. (9) is 
I 

'to (A, t) = exp ·[- ~ ·w (A(t"))dt"}, (10) 
0 

which can be established by substituting Eq. (10) 
in Eq. (9), where 

1PJ (A (t")) = ~ W.(A (t"), A") dA" (ll) 
A" 

and integration is carried out over all components 
of A': Equation (ll) is so chosen that the entire 
probability of collision is equal to the value given 
by Eq. (Sa). 

Thus the first term on the right side of E q. (8) 
is determined by the expression 

?o (A, U, t) = '7'o (A, t) ~(A (t), t:). (12) 

The expression on the right side of E q. (12) is 
equal to the product of the probability of the ab
sence of a collision between 0 and t and the prob
ability that a continuously changing A undergoes 
a transition into the interval U or remains there. 

In order to determine 'h (A, U, t) , we consider 
a case in which the first collision takes place in 
the interval t - t' = t - t "+ dt ". The probability 
of such an event is 

?o(A, t-t")w(A(t-t"), A") dA"dt", 

where it is assumed that the first collision is 
such that the state of the particle is found within 
the interval A", A"+ dA '. The probability of 



318 L. JANOSSY 

the passage of a particle into the interval U after 
a time t "is q:( A", U, t '\ and therefore the total 

! 

probability that, as a result of one or more colli
sions, the particle is found in the interval U,, is 
equal to 

:pt(A, U, t) = ~ ~90 (A, t -t")w(A(t -t''), A"):p(A", U, t")dA"dt". 
(13) o A" 

Combining cp0 and cpl' we then obtain 

c;;(A, U, t)=q;0 (A, t)~(A(t).V) (14) 
t 

+~ ~ 'fo(A, t-t")w(A(t-t"), A")q;(A", U, t")dA"dt". 
o A" 

Equation (14), together with Eq. (12), gives the 
general diffusion equation. For practical purposes, 
Eq. (14) can be transformed to a more suitable 
form. 

6. We transform Eq. (14) into an integro-differ
ential equation in the following way. Setting 
t'= t- t", we get from Eq. (9) 

9o (A, t- t") = 9o (A, t) /Yo (A (t- t"), t"). 

Introducing this expression in Fq. (14), we ob
tain 

cp(A, U, t) = cp0 (A, t) {~(A (t), U) 
t 

+ \ \ w (A (t- t"), A") (A" U t") dA"dt"} 
.) .\ IPu (A ( t - t"), t") 9 ' ' ' 
0~ . 

Differentiating this exJression with respect to 
t, we have 

acp(A, U, t) = aincp0 (A, t)"(A U t)' (1S) 
at at 1' ' ' 

+ ~w(A, A")rp(A", U, t)dA" 
A" 

where 
/(-c)=~ (A (t +-c), U) 

I 

+ \ \ w (A (t -- t" + -r), A") (A" U" t") dA"dt" 
.) ) cp0 (A ( t - t" + '!), t") 9 ' ' ' 
0 A" 

and finally 
/(0) = cp(A, U, t)/'f0 (A, l). 

In order to carry out the differentiation, were
call that 

~ j(A (t + '=- t")) = ~ j[A(o) a-r a-r t 

+Ai1) (t +-:- t") + 1/z Ai2 ) (t + -c -- t")2 .•• 

.. . A~O) + A~l) (t + 't- t") 

and thus, 

(a~ f(A (t +-:- r)))_ _ 
.. --0 

,_ "' A(l+I) - 4J h 
k, I 

ilf(A(t-t")) 
aAul 

h 

consequently, 

( ill(-r)) = "'A<t+llf!l(O) 
a-r 4J h ~A(I) 

~= k, I (T k 

+ ~ AU+l) _a_(cp(A, U, t)) 
k, 1 k a A k1) , q:>o (A, t) . 

Substituting in Eq. (IS) we get 

arp (Aat U, t) = ~ w (A, A") f (A", U, t) dA" 
A" 

I "'A<Z+l) acp (A, U, t) 
T 4J k aA(l) 

h, l k 

+ (_!!__ "' A U+l) a ) 
at - 4J h aACt) In Yo (A, t) 9 (A, U, t). 

k,t h 

It is easy to see that the last term is equal to 

-w(A) 9 (A, U, t). Finally, the diffusion 

equation takes the form 

lr a (A) "' A(I+I) a ) -ar+·zv - ...::::J k --U-) cp(A, U,t) 
h, z aAk (16) 

= ~-w(A, A")cp(A", U, t)dA" ... 
A' 

7. As an example of an application of our for
mula, we consider the scattering of a partie le in 
a homogeneous absorber and, in particular, the 
distribution of the area between the projection of 
the trajectory and a straight line (see Fig. 2). 
Knowledge of the distribution of this quantity can 
be useful in the determination of the energy of the 
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particle from its track in the emulsion. 
Let us•consider a particle which moves at a 

small angle to the x axis, and only those cases of 
scattering which do not lead to large departures 
from this direction. We neglect quantities of 
order A 2, where A is the projection of the angle of 
the track on the x, z plane. 

Neglecting large angle scattering, we can also 
neglect the possibility of recurrence of the initial 
value of x for the moving particle, and therefore 
we can use x as the independent variable instead 
of t (see Sec. 2). 

The particle is thus characterized by its energy 
E, the coordinates x, Z, the angle A with the x 
axis and the area between the trajectory and the 
x axis (Fig. 2). Physical interest attaches .not to 
S but to the area of the segments, i.e., (see Fig. 
2) 

s = S- 1/ 2 (Z + Z') x. (17) 

It would be more suitable, however, first to deter
mine the distribution of S and then derive the distri

' but ion of s. 
. In order that the notation be the same as used in 
Eq. (16), we write 

E = A1, A1 (x) = Ai0>, 
A= A2 , A 2 (x) = A~0>, 

Z = A3, A3 (x) = A~o) + xA~1>,. 
. A(l) A(O) A where 3 = 2 = , 

S = A4 , A4 (x) = Ai0> + xAi1> + 1/ 2 x2A~2), 

h A (l) A(O) z A(2) A(O)- A Th d'f w ere 4 = 3 = , 4 = 2 - • e 1 -

fusion equation then has the form 

( a A<1> a ax + w (A)- 3 aA~o>-
(18) 

A<I> a A<2> a ·). 
- 4 "A<o> - 4 "Ao> rp (A, U, x) 

v 4 v 4 ' 

= ~ w(A, A")t;(A", U, x)dA" 
A" 

with the additional conditions 

A (2) _ A<Il __ A<o> __ A (19) 
4-:3-2-' 

Ail) = A~O) = z. (20) 

Equation (19) can be substituted directly in Eq. 
(18), since E q. (18) does not contain any deriva
tive with respect to Ai2 ) or A~1 ) • Fowever, direct 
substitution of Eq. (20) in Eq. (18) is not possible, 

. h d . . . h t t A(l) d A(O) smce t e envat1ve s w1t respe c o 4 an 3 

apply to different processes, even though the com-

FIG. 2 

puted values of these cpantities can coincide. We 
demonstrate that we can eliminate Eq. (20). Let 

A(l) -- Z A(o) -- Z · then we have in place of 4 - 1• a - • 

E q. (18): 

(:x +w(A) -Aa~ -Z : 5 -A il;J 
Xrp(A, U, x) 

= ~ '<V (A, A") cp (A", U, x) dA". 
A" 

We now set 

? (A, U, x) =~(A, U,x) f(Z- Z1), (21) 

where 
drp I dz1 =.0. /(Z- Z1) =!= J. 

Substituting Eq. (21) in Eq. (20) and dividing 
by f( Z- Z 1 ) , we get (under the assumption that 
w(A, A 'j clearly does not depend on Z or Z 1): 

( a a a)-ax + w (A)- A az -Z as ·.p(A, U, x) (22) 

I' -

= ~ w (A, A") 9 (A", U, x) dA", 
A" 

for Z = Z 1 we get cr (A, U, x) = f(O) ~(A, U, x). 

We can assume f(O) = 1 and, consequently, in the 
most interesting region, Cfl = cp· For this reason, 
we omit the bar over cp in Eq. (22). We can there
fore remove completely both the condition (19) and 

condition (20), and solve Eq. (22) without addi
tional conditions. 

8. In what follows we introduce approximations 
for the purpose of simplifying Eq. (22). Thus, we 
assume that w (A, A") depends only on the energy 
and the absolute value of the angle of scattering. 
We then write 
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w(A, A") =w(E; E", JA-A"j) 

x ~ (Z- Z") 0 (S- S''); 

we then get, in place of Eq. (22), 

( ;, - A ~~ -- Z :s) 'f ( E, A, Z, S; C; x) 

= ~~w(E; E",/A -A"I){cp(E', A", Z, S; C; x) 

-9 (E, A, Z, S; U; x)} dE"dA''. 

If we assume further that, for E - E """ 0 and 
A - A """ 0, the quantity w has a sharp maximum, 
i.e., that both the energy losses and the scattering 

essentially consist of many components of small 
value, then the expression under the integral will 
be 

·r (E", A', Z, S; U; x)- 9 (E, A, Z, S; U; x) 

'-"""' {.(E"- E)~ +(A"- A) _a_ + _t_ (E" __ E)2 _a 2 

at aA 2 a1:.2 
+ (E"- E) (A"-- A) a:~A + ; (A"- A)2 ~? + · · ·} 9 (E, A, Z, S; U; x). 

Upon integration, all terms propoctional to 
A-A "vanish because of symmetry and there is left 

~ ~ · .. dE"dA" = --a (E) :t + ~ b (E) :;2 

+ J_::; (E) a2 --1--
. 2 aA 2 ' • • • • 

where 

a (E)= ~ (E -- E") w (E, E") dE", 

w (E, E") ~. ~ ·w (E, E", I A-- A"/) dA", 

b (E)= ~ (E- £")2 ur (E, E") dE", 

:; (E)=~~ (A-- A") w (E, E" I A --A"/) dA"dE". 

In the latter approximation we have, conse
quently, (23) 
r a a 1 a2 1 a2 
\ax+a(E)-gp- 2 b(E) at2 +;rcr(E) aA 2 

-·-·A _i_ --- 7 _i_) c:; (E A Z S· U · x) == 0 
oZ ·~ as · ' ' ~, ' ' . 

Further, we neglect the fluctuations of energy 
loss, i.e., we set b(E) ""0. Finally, for conven
ience in later calculations, we introduce more sym
metrical notation, namely, E = X 0 , A= X 1 , 

Z = X2 S = X3 and X X X X X · ' == 0' 1' 2' 3' 

furthermore, we shall assume that U denotes a 
narrow interval in the neighborhood of 

x' c= X~, X~, X~, X~. 
Thus our problem reduces to the solution of the 
equation 

( a , , a 1 (X ) _!!!:__ 
-,-I i1 ();o) --v + '""') cr 0 av2 

, (JX o.-'\o ... .t'-1 
(24) 

---- X1 aax h (X. X', x) 
" 3 / 

under the initial condition 

'f(X, X', 0) = o(X ·--X') 

~= o (Xo - X~) o (X1 - X~) (25) 

X o(X2-X;) o(X3 -X~). 

9. For the solution of Eq. (24) we separate 
that part of the function which depends on the 
energy, i.e., we set 

cp (X, X', x) = f (X0 , x) 9 (X, x). (26) 

Substituting E q. (26) in E q. (24 ), we get 

iJf (Xo) + a (X ) of (Xo) c= O 
ax • 0 oX0 • 

The solution of the equation above, which satis
fies the condition (25), has the following form 

~ ( ~x, ax~ ) f(X0 , x) =ox-- -. 
. a (X0) 

x' 

(27) 

Substituting Eq. (26) in Eq. (24), we find that, 
for all values of the variables for which f fO, the 
function cp must satisfy Eq. (24). It foil ows from 
Eq. (27) that cp must satisfy Eq. (24) only for 

where 

X 0 c= X 0 (x), 

x,,(x) dX" 

~ (X?, =X. 
' a o) 

xo 

(28) 

Thus we can rewrite Eqs. (24) and (25) in the 
following form 

(29). 
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cr (x) o= cr (X0 (x)), 

~f (X, U) = 0 (X1 - X~) 0 (X2 ---X~) o (X3 -- X~) 

and it is now possible not to consider the com
ponents X0• 

10. To obtain a solution of Fq. (29) in clear 
form we apply a Laplace transformation relative 
to the three components of X to cp and E q. (29). 
Consequently we introduce the function 

(30) 
+><> 

\ ).y-
= J e" 'f(X,x)dX, 

where t..X =-~ >. 1X 1 'A 2Xc +- '-:JX3; 

dX = dX 1 dX2 dX:l-
After the transformation, Eq. (29) takes the form 

( i) I 1 -( ·)'/,2 _I I _i!__ 
\.oX I :.! ~ X l r ·2 ()),1 (31) 

. iJ \) • (' ') 0 1.3 ;:;::-- 1-;J ,.., , X '= , 
uA2 J 

~ 

'f (J., 0) = exp {'AX'}. 

Assuming that (32) 

3 
·+ 

In~ (J., X) ~ pu,'Ai'Ah; f3u, = P~<i, 
k=1 i,/<.=1 

we find from Eq. (31) 

x1 =A', x2 = Z'---A'x, (33) 

a3 = S'- L'x + 1/ 2A' x 2 ; 

~ 11 = 00 (X), ~12 c= - 01 (X), (34) 

where 

P13 = 1/z 0 2 (x), 

~z2 = a2 (x), Pz3= - 112crs(x). 
~33 = 1/4 cr4 (x), 

X 

crn(X) = ~ (x-x')~<cr(x')dx'. 
0 

(35) 

Substituting Eqs. (33)-(35) in Eq. (32), we obtain 
the Laplace transform of the solution of E q. (29). 
Carrying out the inverse transformation, we find 
the solution in the following form: 

:;-;tx. x) = (2"' det ~~~,) 'J, 

x exp i-} ~ ~ik (X,- x;) (X1, - 7. 1,)~, 
i_fl 

(36) 

where ~ih is equal to the minor Pih I det ?ik, i.e., 
~i,, are the terms of the inverse matrix for {3ik 

where ~ ~ikP!tl = 'i)ik· 
k 

ll. Equation (36) gives a similar expression 
for the instantaneous distribution of A: Z'; S'at 
a given depth x, for given initial values of A, Z, S. 
If we take the theoretical value of a(x), we can 
compute numerically the values of all the coeffi
cients. By way of an example, we consider in more 
detail the properties of the distribution (36) under 
neglect of energy losses, i.e., considering a(x) = 
const. For simplicity, we take 

(37) 

a(x) has the dimensions of inverse length and 
therefo_re Eq. (37) determines the unit of length. 

Substituting Eq. (37) in Eq .(35) we find 1 crk (x) 
'xhH I (k + 1); further, from Eq. (34) it fol

lows that 

~n = x, P12 = - 112 X 2 , 

r-~ _ 1; x3 t-'22- 3 , 

det ~ill =- x 9 I 8640, 

Substituting X = 0 in Eq. (36), i.e., A = Z = S 
1= 0, and considering that the particles set out 
parallel to the X axis from the origin of the coordinates, 
we find 

cP(O,X',x) 

ix--'J, exp {- -1 (9A' 2 + 72A' I..!..:__- A')-+- 120 A'(~-~:_+~ A') 
2x \ X I X 2 X 2 

'- 192 (£-A' )2 + 720 (__£__-A') (5:_- Z' +~A') 
I \X \ X x• X 2 

-+- 720 -. - - -J- --.- A -· , ( S' Z' 1 ')2)1 
' x" x 2 J ' 

1 =-= (8640 I 2n)'l' .. 

Writing, for brevity,?(X', x)in place of:p(O, X', x), 
we find, after transformation of the polynomial in 
the exponent, 
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1 
q:- (X', x) = 1x-'f, exp { -- 2x (9A'2 

-72A'Z' I x + 120A'S' 1 x 2 (38) 

+ 192 Z' 2 I .x:l - 720 Z' S' I x 3 + 720 S ' 2 1 x 4)} • 

Equation (38) gives in cle a- form the instantan
eous distribution of A ', Z: S '; with the help of 
this formula, it is possible to determine, in the 
usual fashion, the me an quantities of momentum, 
correlation coefficient, etc. From Eq. (38) we can 
also obtain the homogeneous distribution of A ', Z' 
and s' = S'- 112 xZ'; we get (see Fig. 2) 

? (A', Z', s'; x)= rx-'1, 
(39) i. 1 

X exp - --· (9A'2 - 12A' Z' I x 
. 2x 

+ 12Z'2 Ix+ 120A's' lx2 + 720s'2 lx4)}. 

We c.an average ove.r A.' or Z'and, consequently, 
obtam the double dtstnbution: 

-+oo 
9(A', s'; x) = ~ 9(A', Z', s', x)riZ' 

-00 

= '[t.X-3 exp{-_!_- (4A'2 
2x 

(40) 

However, the distribution (40) is .not of imme
diate interest. We are interested in the instan
taneous distribution of the quantities a'=A '-Z'/x 
and s '. The importance of these quantities is 
clear from Fig. 3; a' is the angle between the tra
jectory of the particle and the straight line con
necting the origin of the trajectory with the final 
point. 

The distribution for a', s 'has the form 

~(a' s'· x) -- ~ x-3 
I ' J - 12 

(41) 

xexp - 2x (8a' 2 +80a's'/xLi-320s'2 1x4)t, { 
1 . 

\ 
\ 
\' ,. 

\' 
'\ 

s'' 
\' 

\ 
\ 
\ 

\ 

FIG. 3 

As is evident from Eq. (41), there is a strong nega
tive correlation between a' and s; the reason for 
this negative correlation can be found in a consi
deration of Fig. 3. In particular,. according to Eq. 
(41), for a fixed value of A', the most probable 
value of s 'is equal to 

s~ (a') = - a' x 2 1 8. (42) 

Similarly, the most probable angle a', for a fixed 
value of s ', is obtained from Fq. (41): 

(43) 

It is interesting to compare the values of the coef
ficients in Eqs. (42) and (43). Averaging over a' 
we can determine the distribution of s ~ We obtain 
finally, ' 

·.p(s'; x) =·rax-'l•exp{-60s' 2 lx5}. 

The distribution is strictly Gaussian with the most 
probable value of s '= 0. ' 

In the future, we hope to return to the question 
of the application of the formulas just developed 
to the problem of the measurement. of the energy of 
particles which undergo scattering in a photo
graphic emulsion. 

Translated by R. T. Beyer. 
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