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It is obvious from the above that in the initial 
phase of the process diffusion plays a secondary 
role, but asymptotically, for large values of t, the 
speed of growth is determined exclusively by dif­
fusion. Actually it is seen from F q. ( 9) that when 
t---+ co V ~ at-'1, ; a is determined by substitu­
tion into (9), and we obtain the asymptotic speed 
of growth, which coincides with (7). 

Our con elusions, as one can easily be con­
vinced, are preserved for a different choice of 

conditions on the face, for instance, for a condi­
tion of the type 

V(t) = k [c (0, t)- c0 ]". (ll) 

Equation (9) can be easily solved for the case 
of a process of the first order, n = 1 • Dividing 
Eq. (9) for n = 1 by lft" _ t, , integrating with 
respect to t from 0 to t ", and changing the order 
of integration in the last term, we get the equation 

Vr:D Vr:D -a- (c00 - c0)-~ V (t) 

,r;- M v;; 
= 2k ( C00 - c0) Y ' - ,r . r D 

which has the following solution 

Using the asymptotic expansion 

erfc (z) = 2_ 1!-z' ~ (-1)" (2n)! 
V r: .L.J n! (2zj2"-l 

n=O 

t 

~ v (t') dt', 

0 

we obtain the known expression for the asympto-
tic behavior of the speed of growth and the cri­
terion for the applicability of diffusion theory in 
the form 

(13) 

From Fq. (8) one can easily determine the thick­
ness of the depleted zone: ~ = 2 V Dt . Then 
criterion (13) assumes the form \ka~;D ';';> 1. 
Diffusion is the dominating factor after the solu­
tion is depleted in an adequately wide zone; how­
ever, this factor is inhibiting. \1ixing and convec­
tion reduce the influence of diffusion to zero, 
and the properties of the surface become of pri­
mary importance. The role of he at-transfer during 

crystallization after smelting is considered in a 
similar way. 

1 I. V. Salli, J, Exptl. Theoret. Phys. (U.S.S.R.) 25, 
208 (1953). 

2 F. S. A. Sultan, Phil. Mag. 43, 1099 0952). 

3 J. A. Barton, IL C. Prim and W. P. Slicter, j. Chern. 
Phys. 21, 1987, 1991 (1953). 

4 N. I. Litunovskii and 0. M. Todes, J. Tech. Phys. 
(U.S.S.R.) 23, 1125 (1953). 

5 M. Tovbin, Zh. Fiz. Khim. 2 0, 14.35 ( 1946). 
6 A. V. BelJ"ustin, J, Exptl. Theoret. Phys. (U.S.S.R.) 

28, 725 (1955 • 

7 D. A. Frank-Kamenetskii, Zh. Fiz. Khim. 13, 756 
(19.39). 

N. A. 

8 N. A. Figurovskii and T. A. Komarova, Zh. Fiz. Khim 
Khim. 28, 1479 (1954). 

Translated by M. Polonsky 
75 

Relativistic Repulsion Effects in a Scalar 
Field and Attraction Effects in a Vector Field 

lA. P. TERLETSKII 

Institute of Nuclear Problems 
(Submitted to JETP editor November 10, 1 955) 

J, Exptl. Theoret. Phys. (U.S.S.R.) 30 
419-420 (February, 1956) 

J N the recent times, it has been shown by a num-
ber of authors 1- 6 that in the relativistic theory 

of a particle moving in a scalar field, the effect of 
relativistic repulsion takes place. For instance, 
in the case of a radial field with a purely attrac­
tive potential this effect produces a repulsion in 

the neighborhood of the center. In quantum mech­
anics this effect has been discovered and investi­
gated by Kuni and Taksar 1, in the case of a Dirac 
particle with spin. The effect of relativistic re­
pulsion for a classical particle has been investi­
gated most prominently by Werle 2 , Marks and 
Chamosi 3 and also by Infeld. 4 Werle 5 considered 
also the case of a spinless quantum particle, sub­
ject to the Klein-Gordon equation, in a scalar and 
a vector field, and showed that, in the non-relativ­
istic approximation, some additional effective po-. 
tentials appear which can be <;onsidered as repul­
sive potentials in the case of a scalar field, and 
as attractive potentials in the case of a static vec­
tor field. It is easy to show, however, that the 
latter deduction can be made without making a non­
relativistic approximation. Furthermore, for a 
spinless particle, the existence of relativistic 
effects--repulsive in a scalar field and attractive 
in a static vector field--can be deduced in a very 
convincing and clear manner. 

The Klein-Gordon equation for a spinless parti­
cle in a scalar field with potential <I>, and simul­
taneously in a vector field with potential A, A 4 
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has the form: 

In the case of a static vector potential with com­
ponents A""O, A 4 "" U, assuming for the static case, 

as usual, tf"" u exp ( -i Etl h) we get: 

V'~u + ti;~2c-2 [(E- U)2- (mc2 + <P)2] u = 0. (2) 

The latter equation can easily he written in a 
form identical to the nonrelativistic stationary 
Schrodinger equation. Introducing the notati~m 

U' = (<P + ~-=-) + ( E U u2 ) 2mc2 me'! - 2mc2 ' 
(3) 

E' = (E- mc2) (1 + E.- mc2) 
. 2mc' ' 

Eq. (2). can be written in the form: 

- (7i2 I 2m) v2u + [ U'- E'] u = 0. (4) 

In this manner, the eigenfunctions of the consi­
dered problem may be found as eigenfunctions of an 
equivalent nonrelativistic problem with effective 
potential U '. In the case of a purely scalar field, 
i.e., for U ""0, Eq. (4) is identical to the usual sta­
tionary Schrodinger equation with a potential 
U '"'<I> +<I> 2 I 2 mc 2 • In the case of a pure vector 
static field, i.e., for <1>""0, Eq. (4) must be consi­
dered as some generalization of the Schr"odinger 
equation, as far as the parameter E is involved in 
the expression of the effective potential U '"" 
(EU-~U 2 )/mc 2 • However, for each given value 
of E, the funcltion U' can be considered as an ef­
fective potential. It is with this potential, in par­
ticular, that the definite solution of Eq. (2) with 
£,£ k is determined. 

One sees from the expression (3), that, in the 

case of a potential monotonically decreasing to­
wards the center, i.e·., in the case of an attractive 
potential <I> (r}, the effective potential U ' ( r) in­
creases towards the center, i.e., becomes repul­
sive for r < r 02, where r 0 is determined by 
cfi,.,(r0 ),-me . In the case of a potential, mono­
tonically increasing towards the center, i.e., in the 
case of a repulsive potential U (r ), the effective 
potential U '( r} becomes decreasing towards the 
center, i.e., becomes attractive fm: r < r where 
r m is determined by U ( r m) ,£. How eve~, for a 
repulsive pot€ntial <I> (r) of a scalar field, the ef­
fective potential is everywhere repulsive, and for 
an attractive potential U( r) of a vector field, the 

effective potential is everywhere attractive. 

The effect of relativistic repulsion in a scalar 
field has been satisfactory studied in the liter­
ture.1-4 To take the simple.st example of relativ­
istic attraction effect in a repulsive vector field, 
let us consider the problem of the motion of a 
scalar particle in a static field with a potential 
which is a step function, high at the origin, i.e., 
a potential: 

0 U { urn for r<ro. 
<P = . (r) = 0 Urn> 0. 

for r > ro, 

For the function x(r),ru(r) in the state z,o, 
E<:t· (2) takes the form 

(d2y_ I dr2) + 1i - 2c-2 [(E- Up- m2c4 ] y_ = o. 

(5) 

(6) 

lt is easy to see, that for sufficiently large 
values of U m there exist solutions of (6) which are 
of the form 

) {
A sin k1r for r < r 0 , 

Z (r = B -kor f > E < mc2 
c - or r r0 , 

(7) 

From th.e cont~nui~y conditions on the function X 
and on 1ts denvahves at r=r it follows that the 
coefficients k 1 and k 2 are s~bject to the relation­

ship tan r 0 k 1 ,_k 1 1 k 2 • The eigenvalues E are 
determined from this equation. It is easy to see 
that it has solutions with eigenvalues E lyine; in 

the interval -mc 2 < E < mc 2 for U > E +mc 2 

(thenkl>O,k2>0). m 
The easiest way to convince oneself in the truth 

of .the last statement is to take a constant E in the 
interval mentioned above ( for instance take E= 0), 
and to vary U m , i.e., take a constant k 2 and vary 

k l. 
Hence, for a purely repulsive potential (7) there 

are solutions of Eq. (2) forE< me 2 , which have the 
same form as the solutions of a nonrelativistic 
problem with an attractive step-function potential. 
However, in the case of a pure Coulomb repulsive 
potential U = e 2 I r, the relativistic attractive effect 
in a• vector field does not give rise to stable or 
metastable energy levels. Indeed, in this case, 
the maximum value of the effective potential is, 
according to (3): U' =E 2 I 2 me 2 and the mini-max 

mum possible value of E 'for a particle localized in the 
region of "attraction" can be estimated, using the un­
certainty relations, to be ("lie I e2) 2 3£21 2me2. 
Then the ratio E' I U' max"' 3 ("lie 1 e2P = 3 (137)2 ,i.e, the 
lowest level E 'lies much higher than U' . max 
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It is clear that the relativistic attraction effect 

in a quasi-coulombic repulsive potential with P.O­
tential g2 / r can give rise to metastable levels 
only if the constant g is more than 15 times larger 
than the elementary charge e. 

The calculations shown above confirm that in 
the relativistic quantum theory for a spinless 
particle in a scalar purely attractive field, appear~ 
a repulsion effect, and in a static vector, purely 
repulsive field, an attractive effect takes place. 
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I N the kinetic theory of electrons in metals, it 
usually suffices to limit oneself to the use of 

the distribution function f( p,r) which gives the 
number of electrons per cell of phase space. How­
ever, for processes related to the change of spin 
states of the electrons, this appears to be insuf­
ficient and one has to introduce the vector phase 
space magnetization density a(p, r), which is a 
generalization of the density matrix in the mixed 
representation for the case of a system of particles 
with spin 72. One can write the following equation* 
for a( p,r): 

ocr + ( piJ ) - (E [pH] iJ ) -+ - --cr+e +----cr 
dt miJr me ' dp 

(l) 

[3 • 
+T!crH] =-Ju-J-. 

where {3/2 is the effective magnetic moment of the 
particle and J -r and J u are integral operators, tak-

ing into account collisions without and with spin 
change, respectively. Usually the corresponding 
relaxation times Tand U satisfy the inequality 
U » r, hence the introduced separation between 
the integral operators does not give rise to any 

problems. Note that J -rand J U, generally speak­
ing, depend on a as well as on f. We shall not 
write their exact expression. We can approximate 
lu by: 

Ju = U-I (;- ;oo>• (2) 

where U is the spin relaxation time, and ~0 is 
the equilibrium value of the phase density of mag­
netization, which differs from zero in the case of 
a permanent magnetic field. In general, one can­
not use for J 7" an approximation similar to (2), 
because 

~ J.,dp = 0, 
(3) 

which is inconsistent with the equation analogous 
to (2). Equation (3) is an obvious consequence of 
the fact that a collision without spin change does 
not change the magnetization. 

Being interested in the equation for the space 
magnetization density M ( r, t) we assume that 

- - - -cr = cro + :E = M (r, t) F (p2) + ~. 

where 

~ dpF(p2) = 1, ~ dp~ = 0. 

Then, from (l), we get the following system of 
equations: 

aM ~ ( p a \ ---+ dp --):E iJt m iJr 

(4) 

(5) 

(6) 

f3 I +~-[MxH]=-0 (M-Mol. 

F (p2) ( ! :r) M + Me ( E a~ ) F 
(7) 

ai: , 2: r P a ·) "· +w'u+\--mar, ~ 

- p\ dp'(L ~) l: (p') + e(E )pxH] 
.) m iJr me ' -I: 

a ) -
iJp 

to get the equation forM it is sufficient, with the 
help of (7) to express :lin terms of M. This is not 
difficult to do in the case I<< a i.e., when the part 


