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The method of the Green's function is applied to the problem of the interaction of electrons 
with the phonon field. The electron energy spectrum and electron momentum spectrum at 
absolute zero have been computed, 

1. INTRODUCTION 

THE question of the interaction of conduction 
electrons with the vibrations of the crystalline 

lattice has in recent years acquired considerable 
importance for a whole series of problems. It has 
been observed repeatedly (see, for example, refer­
ences l-3) that, within the framework of the phonon 
picture of the crystal, this problem is analogous to 
problems considerel in contemporary quantum field 
theory (only with this difference, that the momentum 
of the phonon has, of course, an upper limit). 
Salam 3 , with the help of the usual technique of 
Feynman diagrams formally constructed an S matrix 
for the electron-phonon field. However, the calcu­
lation of .iust one S matrix does not always present 
immediate interest. In a. series of cases, there is 
physical interest in the energy spectrum of the 

electron which interacts with the vibrations of the 
lattice, and the state distribution' functions of 
the electrons .. These problems are most simply 
solved by the Green's function method, since the 
distribution function can be obtained directly from 
the latter. 

In the present research, the connection is estab­
lished between the Green's function and the distri­
bution function, and the state of the system at ab­
solute zero is investigated. For concreteness, we 
consider a system of electrons that are not directly 
interacting (an electron gas). However, it must be 
kept in mind that all considerations can, by a 
simple change of notation, carry over also to the 
case in which arbitrary elementary excitations of 
the Fermi type interact with phonons. 

2. GREEN'S FUNCTION AND THE DISTRIBUTION 
FUNCTION 

We denote by t/1 s(x) and A(x) the quantum wave 

1 H, Frolich, Phys. Rev, 79, 845 (1950). 

2 S. B. Tiablikov, J, Exptl. Theoret. Phys. (U .. S.S.R.) 
21, 377 (1951}. 

3 A. Salam, Progr. Theoret. Phys. 9, 550 (1953), 

functions of the electron and the phonon fields 
(x = {x, x 0}, s =spin index; only longitudinal 
vibrations of the lattice are taken into considera­
tion, because the interaction of electrons with the 
transverse vibrations can usually be neglected). 
The Lagrangian of the interaction with the acous­
tical vibrations has the form (h = c = 1; c=velocity 
of sound): 

Lint= {g·?: (x) Ys (x) + r (x)} ~ (x); (2.1) 

Here p(x) is the "external charge density" (analo­
gous to the "external current" in quantum electro­
dynamics), g =coupling constant (it can be expres­
sed by the krtown constant C which enters into the 
theory of electrical conductivity 4). The matrix S 
is given by the well known expression (we make 
use of the interaction representation) 

S = T {exp (i ~ L (x) dx)}, (2.2) 

where the symbol Tl . . . ! denotes the T product. 
Naturally, Sis an eigenfunctional of p(x). The 
electron Green's function G and the "potential" 
a(x) are obtained in the same way as in quantum 
electrodynamics (see, for example, reference 5): 

Oss' (x, y) = <L> (T {'fs (x) ·p;; (y)S})0 , 
(2.3) 

a (.X) = ~ i o In (S)0 /0'? (x) (2.4) 

(the symbol < ... >0 means "averaged over the 
ground state of the system m the absence of inter­
action"). The Green's function for phonons could 
also be introduced, but it is not necessary for us 
in the present research. 

It is easy to see that the Green's function 
G ss ,(x, y) directly describes the state distribution 

4 H. Bethe and A. Sommerfeld, Electron Theory of 
Metals. 
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of the electrons (taking into ace ount the interaction 
with the phonons). 

Thus 

lim a (x, y) =- iR~ (x, y; t); 
(2.5) .t.o-+ Ya=t 

Xo<Y• 

lim a (x, y) = iR~ (x, y; t), 

If the dynamical variable ,\has a definite meaning 
even in the presence of interaction of the electrons 
with the phonons, then 

Iss' (A, A') =Iss' (1.) 0 (A-/,'), 
(2.9) 

Xo-+Yo=f ·• 
-'o>Yo ass' (X, y) =- i ~Iss' (J,) ·~), (x) y~ (y) dA. (2.10) 

where R~ and R1 are "single particle" density 
matrices for electrons and holes, respectively (cal­
culated with consideration of the interaction with 
phonons). We now put l/J{x) in the form 

(2.6) 

(a 5 (A) are the Fermi operators, which operate on 
the occupation numbers, <f!,\(x) are the eigenfunc­
tions of a certain additive operator, the eigenvalues 
of which are A; the index ,\can also denote the 
set of several quantities). Then (for x 0 < y 0): 

(2.8) 

Passing to the limit x 0 -+ y 0 in accord with Eq. 
(2.5), we see that, to find the distribution of the 
electrons over the values of the "quantum number" 
,\,it suffices to expand G 8 ,(x, y) in terms of the 
eigenfunctions 9A (x) 9~. (,y) ; in such a case, it 
will immediately become clear whether or not it is 
possible to speak generally of such a distribution 
(i.e., whether the given dynamical variable makes 
sense). Similarly, for x 0 > y 0, the expansion of 
the Green's function in terms of the ?A (x)9~,(y) 
gives the distribution of "free places ... 

3. EQUATION FOR THEGREEN'S FUNCTION 
AND FOR THE "POTENTIAL" 

The equations for the functions G , (x,y) and a ( x) 
can easily be obtained (if only in th;~odel of Anderson5'). 
With the use of Eq. (2.3), we have* 

as,s, (x, y) = iKo,s, (x, y) (3 .l) 

\ d v { i3Gs•s. (z, y) . } 
- g j ZI\s,s' (x, z) 13 ~ (z) + la (z) as's, (z, y) , 

a (x) = i ~ dzF(x, z) p (z) 
(3.2) 

(Summation is carried out over the repeated spin 
indices). Here K 88 ,(x, y) and F(x, y) are the dis­
tribution functions of the "free" electron and of 
the phonon field: 

Kss' (x, y) = (T {'fs (x) ·~=· (y) }) 0 , (3.3) 

F(x, y) = (T {? (x) '-? (y)} ) 0 (3.4) 

Writing l/1 5 (x) in the form (2.6), and introducing 
the notation 

(3.5) 

we obtain 

(3.6) 
Kss' (x, Y) 

~ ~ \ dl-?, (x) ?: (y) {~,., -- /j~l(i.)), x, > y,, 

t- ~ dl,?), (x) ?A (y) ~~~~ (1,), Xo <Yo· 

* In Eq. (3.2), the components corresponding to closed 
loops are omitted. It is easy to show, however, that in 
the approxomation employed below ,consideration of 
such terms leads only to the renormalization of the Fer­
mi energy. Assuming the latter operation to be completed, 
one can omit this term. 

5 J. L. Anderson, Phys. Rev. 94, 703 (1954). 



280 VIBRATIONS OF CRYSTALLINE LATTICE 

This ex-rression can be written in more compact 
form if the functions cpA (x) describe stationary 
states (this particular case also represents funda­
mental interest). Let W(A.) be the energy eigenvalue 
which corresponds .to the "quantum number" A. 
Then?;. (x) = U;. (x) exp {- iW ().).x0} and, as 
can easily be :>een, the function K 8 8 ,(x, y) can be 
written in the form 

Kss' (x, y) = .,~lim\ d"AU,. (x) u; (y) 
.:::.d .. & ....... 0 J (3 .7) 

-co 

This formula is suitable for use if the structure 
function j(o), ().) is continuous. In some cases, ss . 
however (for example, in the investigation of a de­
generate electron gas), this function is discontinuous: 

where W is some limiting value. It is then appro­
priate to0replace Eq. (3.7) with 

xKos' (x, y) ==== ,} Oss' _r: 
(3.9) 

r• (' exp f- is (xo --Yo)} 
~ di.U~, (x) Ut. (y) ~ ds 's _ w (:A) ' 

L 

where the contour of integration L is drawn in the 
figure. (This formula is entirely analogous .to the ) 
well known expression for the function Sc (x- y'f'. 

Plane S 

l 

The quantum function of the phonon field A(x) 
has the form 3 

A (x) = 1 \ dff {bteifx + b;e-if-<}. (3.10) 
V2r:3 .) I I 

Here bt, b; are the usual Bose operators, 
jx = f·x-1 f 1 x 0 and the possible values of the 
quasi-momentum of the phonon, lfl, are bounded 
above by the Debye value [ 0• Introducing the ex­
pression 

(3.11) 

we obtain 

'z~a ~ df If I {2iB (f) sin (f, X- y) + ei (f, x-y)}, Xo >Yo· 
F(x, y) = J 1 . 

(3.12) 

tzr:s ~ df If I {-2iB (f) sin (f, X- y) + e-• (f, .<-yl }, X 0 <Yo· 

In what follows, it will be more appropriate to use 
these integral reJresentations for the functions 
K 88 ,(x, y) and F(x, y) and not the explicit expres­
sions for them. 

4. "OPEHATOR OF THE ENERGY OF INTER­
ACTION." THEORY OF WEAK COUPLING 

For the application of any particular form of per­
turbation theory, it is convenient to deal with the 
functional de1rivative not of the Green's function 
itself but ofits inverse matrix. It is easy to see 
that 

oOs's,(Z, y)jop(z) 

(" d 'd 'd " i)a (z') a ( x") = - ~ Z X X llp (z) s's"' Z, 
(4.1) 

oa;;;:s" (x"' x') 
X lla(z') Os"s, (x', y). 

If we introduce the notation 

6 A. I. Akhiezer and B. V. Berestetskii, Quantum 
Electrodynamics, Moscow, 1953. 
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D..Es's" (z, x') 

· \d 'd "ila(z') 0 ( x") =tg ~ Z X ilp (z) s's"' Z, 

then Eq. (3.1) reduces .to the form 

Os,s, (x, y) = iKs,s, (x, y)- ig 

(4.2) 

FJo;;;,~, (x", x') 

FJa (z') 

(4.3) 

X~ dzKs,s' (x, z) Os's, (z, Y) a (z) 

-i~dzdx'Ks,s'(x, z)fl.Es's'(z, x')Os•s,(x', y). 

Multiplying Eq. (4.3) by c- 1 and varying there-
sult with respect to a(z '), we get the expression 

(4.4) 

= gKs's' (z, x') o (x'- z') 

~ ilt.E8 m8 " (z", x') 
' d "K (z ") _ ___.:·:.__;...---,-,.---' Z s's"' , Z ila(z') . 

which is of use in what follows. The matrix 
fl.Ess' (z, x') characterizes the additional energy 
which is transformed by the electron into the 

phonon field and itself represents the analogue of 
the mass operator of qul\ntum field theory. In this 
connection it is pertinent to call D..E the operator 
of the energy of interaction. 

To solve the nonlinear equation (4.3), we must 
make use of some form of perturbation theocy. In 
the present work, we limit ourselves to the case of 
weak coupling. It should he horne in mind, how­
ever, that even under these conditions, direct ex­
pansion of the Green's function in a power series 
of the coupling constant is, generally speaking, 
hazardous. It is more accurate to expand not the 
Green's function itself, hut the equation by which 
it is defined, i.e., the operator of the energy of in­
teraction D..E (or the inverse matrix c- 1, which 
amounts to the same thing). 

In accordance with what we have said, we write 

D..E = D..E(ol + g D..£(1) + g2 D..£(2) + . . . (4 .5) 

Noting that, by Eq. (3.2), 

'Oa(x)=iF(x,z); a(x)lp=o=O, (4.6) 
llp (z) 

we get (the indices on G denote that this function 
satisfies the equation expanded in corresponding 
fashion): 

D..£(0) = D..£(1) = 0, (4 7) 

G~~L (x, y) = o~:L (x, y) = iKs,s, (x, y), 
D..£~~1" (z, x') 

(4 .8) 

=- ~ \ dz'dx"F(z', z) Ks's"' (z, x") 
" j (4 9) 

By reason of Eq. (4.4), Eq. (4.9) takes the form 

D..E;~~ .. (z, x')=-iF(x', z)Ks~~·(z, x'), (4.10) 

and correspondingly, we find the following linear 
equation for d 2l ( x, y) : 

s 1 s 2 

= iKs,s, (x, y)- g 2 ~ dz'dzKs,.,(x, z) F(z', z) Ks's" (z, z') 0~~~. (z', y). (4 .ll) 

This equation can be solved exactly. 

5. FERMI DISTRIBliTION FOR AN ELECTRON 
GAS IN A CRYSTAL AT ABSOLUTE ZERO 

The general relations obtained above permit us 
to solve without difficulty the problem of the effect 

of the zero vibrations of the crystalline lattice on 
the electron distribution function. As a first step, 
we "smooth out" the periodic potential of the lat­
tice, considering it only formally -by replacing 
the real mass of the electron by .an effective mass 
(m). For the functions CfiA. (x) it is reasonable to 
take plane waves (the index A denotes the three 
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components of the momentum of the electron): 

(5.1) 

Po= U7 (A)= p2/2m. 

The structure function ~~~! (1.) has the form of Eq. 
(3.8), where W 0 = f:.F = 'p,2 /2m is the Fermi energy. 
The function B({J is zero lt absolute zero. Thus 
the distribution functions K 88 ,(x, y) and F(x, y) 
take the form 

I<ss' (x, y) = Oss•K(x -y), (5.2) 

(5.3) 
K(x _ y) = -,-i_(' dp \ ds cxp {i (p, x- y)- is (x 0 -y0 )} 

(2r.)4 j .) s- p"f2m ' 
L 

F(x-y)= 2~3 ~df[f[ exp{i(f, x-y)-i[f[[x0 -y0 [} •• (5.4) 

Equation (4.11) is easily solved in this cas e. 
First, it is clea[' that the Green's function is dia­
gonal in the spin indices and depends only on the 
difference of the arguments 

a (2) ( ) ~ a ( - ) s1-" 2 ,t., Y === Os 1s2 X- Y . (5.5) 

From E q. (4.11) we get for the function G(x - :v) 

a(x-y)=iK (x-y)-g2 (5.6) 

X~ dzdz'.K(x-z)F(z'-z)K(z-z')a(z'--y). 

The boundary condition in this equation is clear 
from a consideraltion d Eq. (5.3). Setting s = EF+- s' 
in that case, we see that in the new variables (p,s ') 
the boundary condition takes the usual form: for 
x 0 > y 0 we must get diverging waves, for x 0 < y 0 , 

converging (one does not have to pay attention to 
the factor exp {- iEp{Xo- Yo)}.,which appea-s in froot 
of the integral, in this case). 

The solution of Eq. (5.6) for the given boundary 
condition has the form 

1 a (x- y) =.- (2r.)4 (5. 7) 

l' d \ d exp U (p, x- y) - ip0 (xo-Yo)} 
~ p J Po Po- (p2j2m) --;- igtf(p, Pll) ' 

L 

where the contour L is drawn in the figure (for 
W 0 ==EF), and 

j(p, Po)=~K(x)F(-x)exp{-ipx (5.8) 

Calculation of the integral gives (we limit ourselves 
to the case p F > f0): 

(5.9) 
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a=Vm2 -2m(p0 -p); b=Vm2 -2m(p0 +p); p=lpl. 

2) for p < PF- fo: 

f im S Jg (p + fo? + '2m (Po- /o) 
(p, Po)=- prt2 l_3 111 (p-f0 )2+2m(po-fo) 

+ (p -- m) [(p--: m)? +I b 12] In (p + fo)2_,+ 2.m (Po- fo) 
3 p- -1- '2mp0 

+ (p + m) [(p-+: m[_ + 1 a 12] In (p- fo?.+ 2m (Po- / 0 ) 
.-1 p2 + 2mpo 

+ b [<P- m)2 +I~ I"] In p +lo-rn+ b p-rn-b 
3 p + fo- rn- b p- m + b 

_ a [<P + m )2 + I ~) 1
2

] In fo + a- p- m . p + rn + a + l_~ m f + ;,_ /~}. 
" !o - a - p - rn p + rn - a .) P o .) P 

3) for / P> pq, + fo: 

!( ) im{fg I Uo+P)2 +2rn(po+fo) 
p, Po = - prt2 3 n Uo- p)2 +'2m (Po + fo) 

+ (p- m) [(p--:- m)2 +I b 12] In (p- /o)2_,+ 2,m (Po+ .fo) 
3 p- + 2rnp0 

+ (p + m) [(p -f: rn)2 + 1 a 12] In (p + /o).~ + ~rn (Po+ fo) 
,_, P" -~ 2mpo 

-;- b [<P _ m )2 + ~] 1 n !o- p + m - b p- m ~ b 
:3 fo-p+ rn + b p- m -r- b 

-a[(p+m)2 +~]ln!o+p+rn-a p+rn+a+ 2 f2_16m Jl 
3 !o+p+rn-f-a p+rn-a 3PJo J P Oj' 
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(5.10) 

(5.11) 

Comparing Eq. (5.7) with Eq. (2.10), we can find 
the electron momentum distribution function f(p) where 
the interaction with the vibrations of the lattice is 
taken into account. It will be more useful for us, 
however, to compute not f(p) but the hole distri­
bution function <I> (p) which is related to f(p) by the 
relation <P (p) = 1- j(p). From Eq. (5.7) we get 

Eq. (5.7) determines the energy W(p) of the electron 
which interacts with the phonons: 

W (p) = (p2 I 2m)- ig2j(p, p~), (5.13) 

where p*0 is the square root of the denominator in 
Eq. (5. 7). We note that the following inequalities 
are practically always valid: 

(5.12) <l> (p) = j.._ \ dp exp {--, ipo (xo- Yo)} 
2rt t o Po- (p2 I 2m) + ig2f (p, Po) (5.14) 

(for X 0 >Yo; Xo -~Yo). 
Comparing Eq. (5.7) with Eqs. (4.1 0) and (5.8), 

it iseasyto see that the pole of the integrand in 
Therefore the expression for W(p) can be written in 
the comparitively simple form: 

o " { 2 !.3 f.2 1 2pf • ') 2 W (p) = ...!!:_ - .£__ .!!!._ - /2 + _o In . o ' o -~ ~ p 
2m rt2 p 3 p o 3 t;- 2pfo + 2p2 (5.15) 

4 t; + 4p2 8 ,. _J._ + + 7t] 
+-p3 ln +-:-p3larctg~+arctaP-,o --} 3 4p 2 3 p ,., p 2 . 

(This formula is valid for p » m.) It is further clear from Eq. (5.14) that for 
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p < E~ + 1/ 2 m all the branch points of F(p, p ) 
I (considered as a function of the complex variab~e 
p J lie to the left of E F' By drawing the curve 
along the real axis from - oo top + l/2 m, we can 
compute the integral (5.12) directly for values of 
pin the interval 0 ~ p < Ep + 1/ 2 m (i.e., in all 
regions of practical interest). It must only he 
kept in mind that the pole of the integrand in Eq. 
(5.12) is generally simple (because reduction to 
zero (for one and the same value of p } both of the 

0 
denominator itself and its derivative with respect 
to p 0 is possihle only for a certain definite g). 
Thus we obtain forP<EF + 1/2 m (here and below, 
we keep only the first terms of the expansion in 
small quantitiesof the type m/PF• etc.): 

<ll(p)=O, P<Pc; 

<ll ( ) = 1 + g·m· I . o -,. . { z .• " r 't . 1p4 
P .. ~ L n 4p4 

(5.16) 

(5.17) 

( P -'- fo P- fo '- ') + 2 arc tg -P- + arc tg - 1-1 ·- - T, 

where 

- I + .~g-m- _.::_ f2 r ') " " [? 
Pc- PF l .. ~ 3 · 

t 3 f - L 2 --'- 2t2 

+ 3In t-'2 +2t~ 

+ ~ In ( 1 + ~) + ~ (arc tg (1 + t) 
+arc tg (I-t)-~)]}. 

(5.18) 

t = fol Pp.· 

In particular, if PF :?:> ] 0 (generally speaking this 
inequality does not occur), then E q, (5 .17) has the 
simple form 

(f• ( ) = [1 ---1- 2,f(tn~ ~~ J-1 
J!' p ' ')~~ 0 ,J.. p~ 

(5.19) 

(if p > Pc). In this case, 

- J 4 K"m2 2} Pe-P l1--,-.. t. F v TI'" 
(5.20) 

It follows from Eq. (5.17) that, because of the 

interaction with the zero vibrations of the lattice, 
the electron momentum distribution is somewhat 
"smeared out"; even at absolute zero some of 

the electrons possess .momentum which exceeds 
the Fermi limit. Analogous results are obtained 
also in the calculation of the interaction of elec­
trons with optical vibrations. 
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