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~ a_ccount is given of particular solutions, describing the motion of gases in a mag­
?etic f_Ield for the ca.se of variable entropy .. A_t the same tim.e the motions of a gas are 
~nvest~gated for the mstance when the coefficient of proportiOnality between the field 
mtensity and the gas density depends on the entropy. 

J N Ref. 1 it is demonstrated that if the solution 
of any problem of uniform motion in gas dynamics 

is known, it is easily possible to obtain a solution 
of the corresponding problem in magnetic gasody­
namics, i.e., in the theory of motion of an electro­
conductive gas in a magnetic field. Such a gener­
alization is possible as a result of the existence in 
this case of the integral: 

Hjo=Hv=b . ' (1) 

where the factor b, which remains in force during 
the motion, is determined by the initial conditions. 
Here H is the intensity of the magnetic field, p is 
the density of the gas, and v is its specific vol­
ume. As a result of Eq. (1 }, the equations of uni­

form motion in magnetic gasodynamics can be rela­
ted to the classical equations of uniform motion in 
gasodynamics, where, however, instead of the gas 
pressure Pr it is necessary to use the full pressure 
p: 

(2) 

by means of which the aforementioned generaliza­
tion is obtained. In the light of Eq. (1 }, the total 
pressure for polytropic motions ( including adia­
batic or isothermic motions) as well as the gas 
pressure is a single-valued function of the speci­
fic volume or density. 

However, the solutions of the equation of uni­
form motion in magnetic gasodynamics examined in 
Ref. 1, as well as the corresponding solutions of 
the equation in classical gasodynamics, can be 
applied in practical computations only in cases of 
uniform distribution of the gas parameters at the 
initial moment of time, i.e., in those cases where 
the density, entropy, velocity of the gas, intensity 
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of the magnetic field, and so forth, in their initial 
condition, a'e constant in regions separated from 
each other by initial discontinuities .. In other 
words, the solutions of Eq. (1} can be employed 
only in those cases, where the magnitude b in 
(1} does not change upon transition from one ele­
ment of mass to the other, i.e., is constant ( how­
ever, b can change abruptly in the initial discon­
tinuities). However, the necessity frequently arises 
for the solution of such equations also, in which 
the factor b, which is preserved for the given ele­
ment of mass during its motion, changes during the 
transition of one element of mass into another. We 
will call such problems homogeneous. 

The general method of solving inhomogeneous 
problems of one-dimensional motion in classical 
gasodynamics has been adequately demonstrated 
in Ref. 2. (Examination shows that Ref. 2 refers 
to those instances in which the inhomogeneity is 
due to inequality of the value of entropy, density, and other 
such parameters in various elements of mass under 
the initial conditions.) In the present work, this 
method is employed for the solution of inhomogen­
eous problems of magnetic gasodynamics. 

Let us first convert the equations of one-dimen­
sional motion in magnetic gasodynamics 1 to 
Lagrangian form. As one may easily see, they 
have the form: 

Ut + ( Pr + £__ H 2) = 0 Uh = Vt; (3} 
\ li7t h ' 

St = 0, (vH)t = 0 or S = S(h), 

Hv = b (h). 

Here, as usual, the derivatives are designated by 
a subscript; u x is the velocity of the gas, t is .the 

X 

time, Sis entropy, and h=J pdx is the Lagrange 
. 0 

coordmate ( the mass of the gas contained he-
tween the sections x =0 and the current section). 

As can be seen from the third equation in (3), the 
factor b. in (l) is, as was to have been expected, 
a functiOn of h. In Ref. 1 the case was examined 
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in which b ( h ),=constant and S (h)= constant. Here 

we will consider them as given functions; in the 
particular case, one of them may be a constant. 

The precise solution of (3) is as yet unknown. 
It is possible to obtain an approximate solution, 
however, if the total pressure is approximated by 
an expression of the form: 

fL b2 (h) 
P=Pr+- --. 8tt 'V2 

(4) 

[ A~k Jh ( ho \3k-l 

~~c V - cr (h) h + h 0 ) ' 

where A, k and h0 are certain constants, and a (h) 
is a function selected, like these constants, from 
conditions of optimum approximation of the total 
pressure. Since (4) contains three arbitrary con­
stants and a single arbitrary function, the accuracy 
of this approximation is entirely satisfactory for 
the solution of many problems of magnetic gaso­
dynamics. The further solution of (3) simultaneous­
ly with (4), according to the method in Ref. 2 is 

accurate. A particularly important part is played 
by the constant h0 , which characterizes the degree 
of inhomogeneity. For large h , the initial distri­
bution approaches uniformity; ~t small h 0 , it is 
strongly inhomogeneous. 

Transforming (3) and (4) to new variables with 
the aid of the substitutions of Ref. 2 

'1: = (h + h0 fl, (5) 

Z = P'i:, W = Uj'l: + ~ p dt, 

we obtain the system: 

(6) 

the solution of which determines both the motion of 
the gas and the change in the magnetic field in 
the problems examined. 

In order to find the special solution describing 
a uniformly propagating wave ( analogous to the 
Riemann solution), we multiply the first equation 
in (6) by 

'h (3k-l)/2k -<k+ll/21< 
h. 0 z (6A) 

or add ( or subtract) it to (from) the second. We 
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then obtain: 

from this we find that the values of the factors 

w + 2kA h(3h-l)/2kz<k-ll/2k _ . t 
-~ k _ 1 o - cons 

and that they are propagated with a speed 

dx 
dt 

(h + ho)2 
Ap 

z<k+ll/2k 

h(31i-l}/2k 
0 

(8) 

(9) 

= p<k+1)/2k ( h + ho )(3k-l}/2k, 

Ap ho 

i.e., Eq. (9) is the velocity of propagation of a 
disturbance in the problems under consideration. 

Integrating (7) with the aid of (8), we obtain: 

(1 0) 

where F is an arbitrary function. Returning to the 
old variables: 

t=+ __ o_ o p ll ( h \<k-l)/2k Ah ( .. ( ) 

~- h + h 0 ) p<k+ll/2h + F h + ho) • 

This is then the special solution, describing in 
implicit form the dependence of the total pressure 
on time and ·h. The dependence of the velocity of 
the gas u on time and h is found by the substitu­
tion of (ll) in the first equation of (3): 

__ ( ho )(3k-l)/2k 

U- + .h + ho 
(12) 

XAp<k-ll/2k +<I> (--P-) 
h + h 0 ' 

where the function <I> (z) satisfies the condition 

d<l>/dz =- zdE/dz. 
(l2a) 

As an example, let us examine the case in 
which F=O, which is the analogue of self-simulated 
motion in inhomogeneous problems. From (11) and 

(12) we then find: 
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p = ( h ~o ho /"--1)/2/l ( A:o /h/(h-'.1) 
(13) 

- ( ho )21< f Aho )(k-l)J(h+1) 
U-U 0 - -- A!-

h + h 0 \ t 

U0 = const. 

The initial values of p and u are found at some 
value t=t 0 • The formulas in (13) make it possible 
to examine qualitatively the peculiarities of motion 
in inhomogeneous problems. In particular, as may 
be deduced from (13) and (12), the total pressure 
decreases with time according to the law t-2k(k+l); 

whereas the velocity increases from its zero value 
to 

( 
h \(3k-1)/2h 

U = __ o_ ApU'-1)/21< 
max h + ho) 0 ' 

(14) 

where p 0 is the initial value of the full pressure. 
Thus the maximum velocity of propagation depends, 
generally, on h. This circumstance can lead to 
the formation of rarefaction shock waves, des­
cribed in Eq. (13). 

In fact, since u=(atlat )h then, integrating the 
second equation of (13), we arrive at a relation­
ship which is determinant for x: 

X= _ k: 1 (--ho_)2h 
2 h + h 0 

(15) 

( 
Ah , <ll-1)/Ck+lJ 

X A T) f + u0t + rp (h), 

or 

x = k t 1 (u- U0 ) t + U0t + tp (h) (16) 

k+1 k-1 
- 2 - ut - - 2 - u0t + rp (h), 

where 
(1 7) 

t = f0 , X = X 0 (h), 

_ (- ho )(k-1)/(k+!) ( Aho \2k/Ut+1) 

Po -- h + ho T) ' 

u =Uo- --- A __ o ( ho ) ( Ah )(k-1)/(k+l) 

h + h 0 t• 

then from (4) we find v=v 0 =dx0 I dh, from which 
we determine h=h(x0 ) and cp(h). However, since 

a (h) can be arbitrary in the given prob-

lem, then we will on the contrary 
set t= t 0 cp( h }, from which we determine h =h ( x 0 ). 

Therefore, let cp(h) be given. 

The conditions for the formation of the shock 
wave in Lagrange coordinates can be described 
extremely simply. As a matter of fact, the trajec­
tories of the various particles must intersect, and 
consequently, knowing that x=x(h,t), we require 
that 

(ax) ( h )2k+1 
ilh t = A (k + I) h +o ho 

(18) 

( t \2/Ck+1l ?cp 
x -J + ah = o. 

ho' 

As an example, let us suppose that 

rp = B ( h 0 )"· 
h + h 0 ' 

(18a) 

then we arrive at the following expression 

= Boc(~)"+1 
h 0 h + h0 

This condition relates the Lagrange coordinate h 
with the time of the beginning of the formation of 
the shock wave for the given particle. In the 
particular case, when d=2k, we arrive at the con­
clusion that the shock wave forms at the rr;on,ent of 
time 

t = (~ BA-2k/Ck+1) h -Ck-1)/Ck+Il )Ck+1l/2 (2o) 
k + 1 0 ' 

i.e., simultaneously over the entire region of exis­
tence of the wave. As we see, the influence of a 
strong magnetic field on the motion of a gas can 
be extremely significant. 

In conclusion we may note that if k satisfies the 
condition k = ( 2 n +3 I ( 2 n + 1 ), where n = -1, 0, 1,2,. 
... , then it is also possible to obtain a general 
solution for the system (6), depending on two arbi­
trary functions. Heferring the reader to Hef. 2 for 
details, we immediately write the final result: 

an+ I 
t = ae2 <n+ll [F1 (6 + w) + F2 (6 - w)], 

(21) 

2kA 6 = k _ 1 h0C3k-l)/2k z(k-1)/ 2k 

= 2kh 0 r ~J(k-1)/Ck+l) 
k-1 Lh + h0 • 

With the aid of this solution it is possible to 
investigate the motion of a gas in magnetic gaso-
dynamics after the formation of shock waves. 

Trans.lated by A. Certner 
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