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With reflection of light viewed as interference of waves radiated by molecules and atoms 
of a medium, equations that take into account the effect of the transition layers are derived 
for the amplitudes of the reflected light. No special assumptions are made concerning the 
molecular structure of the medium or of the transition layer. The equations are valid for 
layers of any thinness, including monomolecular layers. At the end ~f the work, t.he equations 
are supplemented by second order terms in fy . Complex mathematiCal calculat10ns are 
avoided by convertmg radiation from volume so'lirces to radiation from surface sources. 

} THE latest investigations by Kizeld make 
• timely the development of a theory of elliptic 

polarization of light reflected by an isotropic me­
dium. This theory is free of the limitations im­
posed by the phenomenological treatment and does 
not introduce simplified concepts with respect to 
the molecular structures of the reflecting medium and of 
the transition layer. Hesults following from this 
theory were given in part in Ref. 2. However, the 
proof giyen there is easier stated than derived. 
Here we introduce the single hypothesis that the 
elliptic polarization is the result of the existence 
of transition layer on the reflecting surface of the 
medium, with no assumptions made at all concern­
ing the molecular structure of the medium or of the 
transition layer. To free ourselves of the restric­
tions of the phenomenological theory, we shall 
dispense also with phenomenological description of 
the transition layer in terms of the dielectric con­
stant or the index of refraction. At the same time 
no limitations whatever are in'lposed on the lower 
thickness limit of the transition layer. To exhibit 
more clearly the physical nature of the theory, we 
propose to employ elementary calculations almost 
exclusively or to avoid calculations where possible 

2. We know that the reflected wave is the re­
sult of interference of secondary waves, radiated 
by the molecules or atoms of the medium. Under 
the influence of the incident wave and of the radia­
tion of the remaining molecules and atoms these 
molecules or atoms acquire dipole moments and 
therefore produce radiation. Since we are interes­
ted in the radiation field at distances from the me­
di~m that are very large compared with the mole­
cular dimensions and the intermolecular distances, 
we can replace the discrete radiation centers in the 
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medium by continuousiy distributed sources. Let 
us introduce two types of such sources--volume 
sources and surface sources. If a plane monochro­
matic wave is incident on the medium the polariza­
tion vector of the medium consists of a homoge­
neous-wave term: 

(l) 

and of a supplementary polarization of the transi­
tion layer. By virtue of the polarization term (l ), 
each volume element of the medium can be consi­
dered as a radiating Hertz dipole of moment P d V. 
In addition to these volume sources, it is also 
necessary to account for the radiation from the 
transition layer. This can be done numerically by 
assuming that each elementary area dS on the sur­
face of the body is a radiating Hertz dipole of mo­
ment T ds. The vector is the supple-

(2) 

mentary dipole moment per unit surface of the body 
(the surface of the medium is taken to be the XY 
coordinate plane; the Z axis is directed downward 
inside the medium; X and Z lie in the plane of 
incidence). This vector and the proposed theory 
make possible a description of the properties of 
transition layer, inasmuch as we deal with a first­
order approximation. The question of the origin 
pf this layer is not touched upon in this theory. The 
layer may be either the result of soiling or proces­
sing the reflecting surface, or the result of the 
molecular structure of the medium near the surface, 
or finally the result of a difference between the 
effective field near the surface and the effective 
field inside the medium. 

3. The radiation from the volume sources can be 
reduced formally to a radiation from surface sources 
Let us subdivide the entire medium into plane­
parallel layers of equal thickness. These layers 
we shall call zones, in analogy with the Fresnel 
zones. The radiation field in the upper half space 
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due to each of these zones is a plane wave, propa­
gating in the direction of the wave vector f' of the 
reflected wave. The direction and length of this 
vector as well as of the wave vector f of the inci-
dent wave are determined by the following condi­
tions: 

(3) 

Let the thickness of each zone be L=-rr /( k +f ). 
z z 

The plane waves radiated by !he neighboring zones 
are then of opposite phase, and the radiation field 
in the upper half space is represented by an alter­
nating series: 

(4) 

in which every term represents the radiation field 
due to the corresponding zone. Were the polariza­
tion wave (l) strictly homogeneous, and were the 
srherical waves radiated by the volume elements 
o the medium to experience no absorption at all, 
the absolute values of all terms of series (4) would 
be equal and the series itself would diverge (oscil­
late). Actually, however, absorption should cause 
the terms of series (4) to decrease monotonically, 
thereby insuring its convergence. If the absorp­
tion is slight, the de crease should be in geometric 
progression, since the attenuation of a plane wave 
of light passing through an infinitesimally thin 
layer of a medium is proportional to the thickness 
dx of this layer, owing to the linearity of the field 
equations. Denoting the denominator of the pro­
gression by q, we can therefore write E=-E 1 /(l-q). 
In the limiting case of infinitely small absorption 
q=--1, and we obtain E=-E 1 /2. Thus the field in­
tensity produced by radiati_pn from the entire me­
dium in the upper half space is equal to half the 
field intensity produced by radiation from the first 
zone. 

Let us subdivide the first zone into a large num­
ber of subzones of equal thickness and employ the 
vector-diagram nethod (Fig. 1). The complex ampli­
tudes of the waves produced in the upper half 
space by the individual subzones are represented 
on the vector diagram by small arrows, forming 
half a regular polygon, and becoming a semicircle 
in the limit. The diameter AB ==lJ of this semi­
circle, is the complex amplitude of the wave radi­
ated by the entire first zone. Were all phases of the 
waves radiated by the individual subzones identi­
cal and equal to the phase of the wave radiated by 
the first subzone, we would obtain ( instead of 

a semicircle) a straight-line segment of length 
rrD/2. This would increase the wave rr/2 times, 
and the phase of the resultant wave would lead the 
phase of the wave radiated by the entire first zone 
by rr/2. Considering that the amplitude of the wave 
radiated by the entire medium is equal to half the 
amplitude of .the wave radiated by the first zone, 
we obtain the following theorem: If a half space 
hounded by a plane is filled with a medium the 
polarization vector of which is given by the plane 
wave (l ), the radiation produced outside the medium 
is equivalent to the radiation due to an infinitely 
thin layer, placed on the surface of the medium, 
provided the dipole moment per unit area of this 
surface is: 

A= ~ P0 exp {i(wt-k.rX-h/2)} (5) 

= - - 1-· - P0 exp {i (wf- k.rX)}. 
fz+ kz 

The proven theorem is valid for the radiation field 
only at distances from the surface of the radiating 
medium that are large compared with the molecu­
lar dimensions and intermolecular distances. Inci­
dentally, this limitation is not as rigid as appears 
at first glance. Exact calculations by Ewald3 

have shown that the radiation field of a crystal 
lattice is practically equal to the radiation of a 
solid medium even at distances on the order of the 
lattice constant. 

!J 

!I 

FIG. l. 

4. To obtain the field of the reflected wave, it 

is necessary also to take into account the added 
radiation produced by the transitio.n layer. This 
can be done by adding the vector T to expression 
(5). This leads to the following theorem. The 

3p, P. Ewald, Ann. Physik 49, 117 (1916). 
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field of the reflected wa¥e is equivalent to the 
field due to an infinitesimally thin layer, placed on 
the surface of the medium and having the following 
dipole moment per unit area: 

---+ i 
A(r) = (-r0 -·I k P 0 ) exp {i ((J}t- k.~x)}. (6) 

z + z 

This theorem is valid not only for infinitesimally 
thick transition layers, but also for layers of any 
thickness. In fact, in a manner similar to that used 
for the radiation due to the medium, the radiation 
produced by the transition layer in the upper half 
space can be replaced by the radiation due to an 
infinitesimally thick layer on the surface of the 
medium, provided only that 7-0 is suitably defined. 

5. Let us now replace the field of the incident 
wave by the radiation from an infinite! y thin layer, 
also placed at the boundary oft he medium. This 
can be done in the following manner: The field at 
point Q, located within the medium where the polar­
ization wave is practically homogeneous, i.e., far 
from the beundary, it can be re~resented in the form 
EQ=E(e) +Ez0 + Eza, where E e) is the field in-

tensity produced at Q by the incident wave; Ez0 -­

the field intensity due to radiation from the medium 
filli~g the lower half space, calculated under the 
assumption that the polarization wave of the medium 
is homog!'!neous everywhere; Eza --intensity of the 
additional radiation field due to the transition layer. 

If we now imagine for an instant that the medium 
fills all the infinite space both above and below 
the coordinate plane XY, and that a homogeneous 
polarization wave (l) is propagated in this medium, 
then it is obvious that the field at point Q remains 
unchanged, since, by assumption, the polarization 
of the medium does not vary at this _point. But in 
this case we can write Eo= E lo +Eu, where Eu 
is the radiation field due to the upper half of the 
medium. Comparison with the preceding equation 
gives: E(e)=Eu-Eza· The effect of the upper half 
of the medium can be reduced to the radiation field 
due tq an infinitely thin layer, placed in the coordi­
nate plane XY, similar to the manner used for the 
lower half of the medium. The effect of the transi­
tion layer in the lower half space can be reduced 
to the radiation due an infinitely thin layer with a 
dipole-moment surface density: 

-+ -+, 

-r'=-roexp{i((j)t-kxx)}. (7) 

This leads to the following theorem: The field 
due to an incident wave in the lower half space is 
the same as the field radiated by an infinitely thin 
layer, placed at the boundary of the medium, pro­
vided the dipole moment per unit surface area is: 

(8) 
(e) ---+, 

A =(--: 0 + k -I P0 )exp{i((J}t--kxx)}. 
z z 

Where we write ? instead ofr , since we deal 
with radiation pro~uced by the t~ansition layer in 
the lower half space. If the transition layer is 
thick the decrease in the phases of the sources in 
the Z direction causes the radiation in the upper 
and ~wer half space to be different. Consequently 

7"0 ~"!'Q in general. Only in the case of very thin 
trans1t1on layers, when the thickness is quite 
small compared with the wave length, can we neg­
lect the changes in phase over the thickness of 
~e l!yer; in this approximation we can assume 
To =To . 

6. The problem of computing the amplitudes of 
the reflected light has thus been reduced to a com­
parison of the radiation produced by two infinitesi­

mally thin layers with dipole-moment surface densi­
ties (6) and (8). It is necessary to recall here that 
the radiation from a dipole depends on the relative 
orientation of the dipole and of the radiation: the 
only effective dipole-moment component is the one 
perpendicular to the direction of the radiation; the 
p~a~lel component produces no radiation. Taking 
th1s mto account, let us introduce the following 
symbols: 

am = '=om I Pom; a~ = '~m/ Pom 
(m = x, y, z) 

(by virtue o! the symmetry ax =ay; a'x=a'y) and 
let us examme two cases. 

First case. Electric vector perpendicular to the 
plane of incidence. Evidently, 

R jP = A (rJ/A (eJ 
S QJS y y ' 

where 25 and R s are the complex amplitudes of the 
incident and reflected waves. Inserting (6) and (8) 
we obtain by simple transformations 

R8 sin (tp- <jl) 1 + iayf(cos tp + n cos <jl) (l 0) 

<£8 sin (tp + <\1) 1- ia~f(cos tp- n cos <jl)' 

where cp is the angle of incidence, t/J the angle of 
refraction, and n the index of refraction of the 
medium. 

Second case. Electric vector lies in the plane 
of incidence. Let e and e 'be unit vectors in the 
plane of incidence, perpendicular to the incidentand 
reflected waves respectively, and directed toward 
the normal to the surface of the medium. Then 
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where 2 p is the complex amplitude of the incident 
wave, and Rp that of the reflected wave. Insel'ting 

(6) and (8) and allowing for the transverse nature 
of the re fleeted wave (k·P== 0) we obtain by a sim­
ple transformation: 

RP tg(9 -·~) 
0p = tg (? + tj!) 

1- if(az sin<p --areas 9 ctg tj!) tg (? + y) 
----~------ ( l l) 1 _,_ ij (a~ sin 9 + a>os cp ctg cjl) tg (?- <)!) 

7. For all their generality Eqs. (l 0) and (ll) 
have the substantial shortcoming that the quantities 
am and a'm remain undetermined. Ilowever, in the 
case of thin transition layers it is possible to 
make definite conclusions concerning these quan­
tities. They have the dimensionality of length, 
and we shall call the transition layer thin if am 

and a 'm are quite small compared with the wave 
length. Let us expand a and a' in power series . m m 
m f and let us keep only the zero-order terms of 

these ex pans ions. In this approximation we neg­
glect the variation of the phase of the source with 
the thickness of the layer. Therefore a ==a' ==y 

h m m m, 
w ere y is the common zero-order term in the 
expansi~ns for a and a' Substituting this value rn.. m' 
into (l 0) and (ll) and disregarding the terms in 

(fym) 2 we obtain: 

Rs sin (m- ,1,) 
- =- __ T __ T[l + 2if" cos~]· 
i})s Sill(?+\)~) 'Y •' (12) 

(13) 

The parameters y x== Yy andy z are independent of 

the field intensity and of the frequency of the inci­
dent wave (neglecting dispersion). These para­
meters indeed characterize the properties of the 
transition layer in the approximation employed 
here. 

8. Assume that the incident light is linearly 
polarized at a 45;' angle with the plane of inci­
dence, i.e.,<S~-= <f) p. Let us introduce the designa­
tion 

R /R = r.eia p s j • (14) 

The polarization of the reflected light will in 
general be elliptic. We shall call the ratio of the 
minor to the major axes of the corresponding el-

!ipse the ellipticity coefficient of the reflected 
light. If the reflected light is passed through a 
Nicol-prism analyzer, it becomes again linearly 
polarized, whereby T} ( which can always be made 
positive by proper choice of o) will equal to the 
ratio of the p and s components of the electric vec­
tor of the reflected waves, i.e., to the tangent of 
the azimuth of the restored polarization of the re­
flected light. In the experiments one usually n;ea­
sures T} and o. The ellipticity coefficient p is 
calculated from the following equation: 

1 + ·r;~- [(1 + 'fj~r -<'l·r, 2 sin"al''' 

1 + 1" + [(1 + 'fJ 2 ) 2 - 4r," sin2a(' 
(15) 

We stopped to discuss these known definitions 
and relationships because in the literature ( see, 
for example, Ref. 1), p is sometin1es confused with 
TJ· Actually, T} characterizes only the position of 
the planar polarization of the reflected light after 
its linear polarization has been restored by a 
Nicol-prism analyzer. The quantity T} alone cannot 
establish the form and orientation of the ellipse 
of oscillations, and o must also be known for this 
purpose. In particular, if O==TT/2, we have p==TJ· 

9. If we determine R / R from (12) and (13) p s 
and compare the results with (14), we readily ob­
tain 

"r,COSr~ ~,,- cos(cp + ·~) · 
cos(?- \ji), 

(16) 

These relationships are accurate as long as the 
( f y m ) terms do not exceed the first power; they 

yield: 

lg 0 = 2f (·iz- ·;)cos? sin2?/(sin2?- cos 2•f). (17) 

As far as T} goes, equations (16) cannot be used 
to compute this quantity with an accuracy greater 
than that given by the simple Fresnel equations. 
It would be necessary for this purpose to carry out 
all calculations with an accuracy up to ( f y m ) 2 • 
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The only exception occurs when the light is inci­
dent at the Brewster angle or very nearly so. In 
this case the zero term in the expansion for 

."1 cos o vanishes, so that the expansion itself starts 
with a second-degree term which affects only the 
third-order quantities in the expression for p and 
can he discarded. If the incidence in this approxi­
mation is at the Brewster angle, the second equation 
of (16) yields 

"I)= p =(...:/A) V n' -+-I ('[z- '[), (18) 

since in this case o=rr /2. Here n is the index of 
:efraction of the medium, and A is the w~velength 
In vacuum. 

Thus, independently of the structure of the me­
dium and of the transition layer, relationships 
(l 7) and (18) should hold, provided only that the 
causes of ellipticity are the transition layers at 
the reflecting surface of the medium. There are not 
enough experimental data available to decide with 
full assurance whether these relationships are true 
or not. In particular, the corrolary of Eq. (18), 
that the ellipticity of the reflected light is inverse­
ly proportional to the wavelength, has never been 
checked at all. According to Eq. (l 7), tan o is 
inversely proportional to A. This consequence has 
also not been checked. The dependence of o on 
the angle of incidence cphas not been studied suf­
ficiently. Before we can study the structure of the 
reflecting surfaces of media by reflected light it 
is necessary to investigate all these problems and 
thus corroborate or reject the basic initial premises 
of ihe theory, namely that the ellipticity of the 
reflected light results from the existence of transi­
tion layers. We can hope that'the continuinginves­
tigations by Kizel' will throw light on this prob­
lem. 

The dependence of the ellipticity coefficient 
p or of the quantity TJ on the angle of incidence cp 
in the vicinity of the Brewster angle cannot serve 
as a criterion for the correctness of the theory 
proposed, for the theory is true only with an accu-
racy to within first-order terms in fy m. To deter­
mine p or TJ in the vc inity of the Brewster angle it 
is necessary to carry out all the calculations with 

an accuracy at least including second-order terms. 
We shall therefore dwell on the form of the equa­
tions in the '' second approximation." 

Since we are interested in the radiation far away 
from the transition layer, we can replace the dis­
crete radiation centers by sources that are contin-
uously distributed through the volume of the layer. 
This can be done if we assume that within the tran­
sit ion layer we add to the polarization (l) a supple­
mentary polarization 

P' = p~ (z) ei(,.,t-krl (19) 

It is easy to see that the radiation in the upper 
half space, due to such a polarization, is equiva­

lent to the radiation, due to an infinitesi­
mally thin layer, placed in the XY coordinate 

plane, provided the dipole moment (2) per unit area 
has the amplitude 

l 

-~ 0 = ~ P;1 (z) exp {- i (k:z + fz) z} dz, (20) 

0 

where l is the thickness of the transition layer. In 
fact, the phase of the wave radiated from point 0 
(Fig. 2) to point A is equal to w t -f'r. Let us iso­
late an infinitesimally thin layer of thickness dz 
and let us extend the radius vector r in the hack­
ward direction until it intersects this layer. The 
phase of the wave radiated from B (R) to A (r) is 
<f>=wt-{'(r+R) -k·R=wt-f'r+(f'-k).R, or since f'x= 
fx=kx and f'z=-fz, we have 

Integrating with respect to z and taking the phases 
of the radiated waves into account, we obtain Eq. 
(20). 

0//l(r-) 

I B(rt)L ~z 
l ' \n '----+---z 

FIG. 2. 

Analogously, the wave due to the supplementary 
polarization (19) radiated from the transition layer 
into the lower half space is equivalent to the radia­
tion from an infinite! y thin layer with a surface den­
sity of dipole moment (7), whereby 

l 

-~~ = ~ P~ (z) exp {- i (kz --f) z} dz. (21) 

0 

The vector P ' 0 ( z) depends on the frequency of 
the incident wave and also on the angle of inci­
dence. However, rather than introduce these two 
arguments it is more convenient to use the argu­
ments kz and fz· Let us expand the vector P' 0( z) 
in powers of k z and f z and let us terminate the ex­
pansion with the first-degree terms: 
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where P '00 , P '0 1 , P '02 no longer depend on the 

frequency (neglecting dispersion) or on the angle 
of incidence. In this approximation we can replace 
(20) and (21) by 

--;;o = d- ikz<h- ifzq2, (22) 

~~ = d- ikzql + ifzq2, 

l l 

d = ~ P~0 (z) dz; ql = ~ (P~1 + zP~o) dz; 
(23) 

0 0 

l 

q2 = ~ (P~2+ zP~0 ) dz. 
0 

It is important to note that in the case of non­
absorbing media the vectors d, q 1, and q are all 
real. It is enough to prove that P' , P' , and 

00 ' 01 ' 
P '0 2 are real. This follows from the reversibility 
principle for non-absorbing media. Let us reverse 
at the instant t""O the magnetic field in all points of 
space. Then, a~cording to the reversibility prin-
Ciple, the electnc field, and consequently also 
the polarization vector of the medium, will have at 
the instant t exactly the same values that they had 
at the instant -L In particular, the supplementary 
polari~ation_ veetor is obtained at the instant t by 
replacmg t m (19) by -t. This gives 

P' (t, r) = P~ (z, f, k) e-i(wt+kr). 

On the other hand, the above reversal of vector 
H also reverses the vectors f, £', and k. Therefore 
the value of P' ( t, r) can be also obtained by re­
versing the signs of f and k in (19): 

P' (t, r) = P~ (z,-f, - k) ei(wt+l<r). 

Comparison with the preceding expression gives: 

P~ (z, :f, k) = p~· (z, -f, _ k), (24) 

from which the above statement follows directly. 
The vector d can be considered as the dipole 

moment per unit area of the transition layer. On 
the other hand, the vectors q 1 and q2 have the 
sense of quadrupole moments per unit area of the 
same layer, Thus the second-order theory differs 
from the first-order theory by further inclusion of 
the quadrupole radiation from the transition layer. 

If we introduce along with parameters y x and y z 
the four new parameters: 

r:n =.q}m/Pom; ·r:, -'"' q2m/Pom (m = X, z), (25) 

we obtain 

(26) 

a:n =1m- ikzr:n + ifz"l~· 

In the second approximation the properties of the 
transition layer are thus characterized by six para-

, ' '' d " A meters: y x, y z, y x, y z• y x an y z. s to 
second order effects which may occur in experi­
ments, this problem is exhaustively discussed in 
Ref. 4, and I will not dwell on it any further. 
These effects reduce to slight differences in the 
values of the polarization angle, of the principal 
angle of incidence, and of the Brewster angle, 
which according to the first-order theory should 
all equal each other. 

11. If the thickness of the transition layer is 
large compared with the molecular dimensions and 
intermolecular distances ( but naturally small com­
pared with the wavelength), the transition layer can 
be phenomenologically characterized by the index 
of refraction. Equations ~13) and (12) then be­
come the Drude equations ; in second-order theory 
we obtain the Maclaurin equation. 4 On the other 
hand, if this condition is not satisfied, such a meth­
od is not suitable, and it becomes necessary to 
know the molecular structure of the medium and of 
the transition layer before the parameters y can 

m 
be calculated. These data cannot be obtained by 
optical investigations alone. An investigation of 
the reflected field can hardly serve as a basis for 
single-value conclusions concerning the molecular 

structure of the reflecting medium and of the transi­
tion layer. An attempt to calculate y x and y z mak­
ing very rough assumptions concerning this struct­
ure is found in reference 2 ( let us note that para­
meters y m employed there differ in sign from the 
parameters used here). In this respect the theory 
requires further development and refinement. 

4D. V. Sivukhin, J, Exptl. Theoret. Phys. (U.S.S.R.) 
13, 361 (1943). 
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