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The statistical theory of the ionization chamber is considered for the investigation of 
nuclear fission. The mean number of pulses produced by the ex particle background is deter
mined. A theory of random processes is developed in connection with the investigation of 
this stochastic process. 

I N the construction of ionization chambers for the 
study of fission processes, the problem of ex

cluding ( or at least minimizing) the ionizing action 
of ex-particles occupies a central place. The ener
gy of the fission fragn1ents can vary v.ithin v.ide 
limits, but their mean energy, in each case, is an 
order of magnitude larger than the energy of the 
ex-particles. However, the superposition of pulses 
from several ex-particles can create a pulse which 
is comparable with those from the fragments. The 
pulses ru;e recorded as a pulse which is created by 
the fission fragments; therefore, it is necessary 
to give at least an approximate estimate of the num
ber of such cases. 

The problem of the correction of the number of 
fissions was considered by Rossi and Staub. 1 Un
der the assumption that the pulses have rectangular 
shape and duration T, they deterntined the .number 
of readings per unit time which contained unwanted 
pulses of ex-particles. For practical purposes, 
their formula is satisfied only approximately, since 
in most cases the pulses have an exponential 
shape. The purpose of the present research was to 
consider the effect of the exponential shape on the 
number of readings. 

l. Let 11 (x) be the probability that the ampli
tude of the pulse produced by the ex-particles be 
less than x. For simplicity, we assume that the 
number of pulses satisfies a Poisson distribution.* 
If N is the pulse density and R (x, t) is the proba
bility that the sum of pulses produced by the <><

particles in the time interval ( 0, t) i~ less than 
x at the time t, one can easily convince oneself 
that R ( x,t + ~ t) is composed of the probabilities 
of two mutually incompatible events, as follo~/' 

l) either the s urn of pulses is less than xe .t T 

at time t, and no new pulse appears in the time in
terval ( t,t + ~ t ), 

*It is shown in Appendix A that these results are 
easily generalized to the case of certain non-Markovian 
process~. A similar generalization has been given by 
Takacs. 

l 
B. B. Rossi and H. H. Staub, Ionization Chambers 

and Counters, New York, 1949. 

2L. Takacs, MTA III, Oszt. Kozlemenyei, 4, 473 (1954). 
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2) or, the sum of pulses is less than ( x-y )e'~t/ T 

at the time t and a new pulse appears in the time 

interval (t,t +~t) with amplitude lying in the inter
val ( y ,y +dy ). It is evident** that 

R (x, t + M) =(I- NM) R (xe~tt.,, t) (l) 

X 

+NM ~R[(x-y)e~lf•,t]dH(y)+o(M). 
0 

It follows from Eq. (l) that 

aR x aR 
at = -;r ax (2) 

)-' 
+ N l ~ R (x- y, t) dH (y)- R (x, t) J 

If lim R ( x,t)- R (x) as t--" w, then the following 
relation results from .E:q. (2): 

X dR 
-r dx 

(3) 

By virtue of the independence of the pulses of 
ex-particles fron. the pulses of fission fragments, the 
distribution function of the sum of pulses of fission 
fragments S (x) is defined in similar fashion bv the 
.equation " 

x d) J ('; I 
-::r dx = M lS(x)- J S(x- y) dK(y)/t' (4) 

f) 

where K (y) is the pulse amplitude distribution 
function and M is the pulse density. Knowing the . 
distribution functions R (x) and S (x), we can deter
mine the distribution function P(x) of the output 
voltage of the ionization chamber: 

.t" 

P(x). ~R(x-y)dS(y). (5) 
() 

. **Th~ pr~bability that more than one pulse appears 
m the time mterval (t, t +~tis equal to 0 (f\t). 
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We denote by V the recording level of the discri
minator which follows the ionization chamber. If 
the voltage at the input of the discriminator in
creases above the recording level V, this fact is 
recorded as a'' nuclear fission". Naturally, in 
this case we also count those pulses which are 
connected with the superposition of pulses from 
.x-particles. We denote by Q 1 the density of pure 
fissions and by Q ;2 the density of pulses connected 
with the superposition of pulses from "'-particles. 
It is evident that the number of readings Q is equal 
to Q + Q . The quantities Q 1 and Q 2 are deter
mined by tte following expressions: 

v 

Ql = M~ {!-K(y)}dP(V-y); (6) 

0 
v (7) 

Q2 =N~ {1-H(y)}dP(V-y). 
0 

I3y appropriate choice of the recording level V 
and other parameters, one can also bring about the 
condition that Q 1 » Q 2 • 

2. Let us choose the amplitude distribution 

function of the <>:-particles in the following form: 

(8) 

where 1 /a is the mean value of the amplitude of 
the pulses. Since the ionizing effects of the fission 
fragments are cancelled out, we obtain the follow
ing expression for the distribution function K (x ): 

X 

K(x) = b ~{I -e-v(x-y)} e-bYdy, (9) 

u 

where 2 b -l is the mean value of the amplitude of 
the pulses of fission fragments. Making use of 
Eq. (8), we get from E;q. (3): 

d ln r (z) I dz =- N~ (z + arl, 

where 00 

r (z) = ~ e-zxdR (x). 
() 

We then obtain immediately 

-~ N
r(z)=aN'(z+a)- '. 

(10) 

(ll) 

The original function r(x) is defined in elemen
tary fashion: 

r (x) = ae-ax (ax)NT-] I r (Nc), (12) 

and the distribution function R(x) has the form: 

R (x) = r (ax, Nr) I I'(N:), (13) 

where I' (ax, NT) is the so called incomplete 
gamma function. 

The functions ( x) is defined in similar fashion. 
It is easy to show that s (z) satisfies the following 
equation: 

d!ns(z)ldz 

From Eq. (14) we obtain 

s(z) = bM' 

whence 

s (x) = b (xb I M-:)(M-r-l)!z 

(14) 

(15) 

(16) 

X exp {- (Mt + bx)} I M,_t(2 V M"=bx), 

where 

The basic problem consists in the determination 
~f the function Q ( V ). ~.laking use of the results 
of Eq. (5) and Eq. (ll ), we find from Eqs. (6) and 
(7) that 

Ql (z) = (MIN) Q2 (z) (z + a) 

x(z+bt1 {1 +b(z+bt1}; 

(17) 

Qz (z) = NaN-=b"k' exp {- Mtz (z + at1} (18) 

where 
00 

<J~- (z) = ~ e-zxQ1 (x) dx; 
0 

00 

Qz (z) = ~ e-zxQ2 (x) dx. 
0 

To simplify the formula, we introduce the nota
tion NT="'; M T=f3. It shoul1 be noted that"' >f3 
and "'« l. To determine Q 1 ( V) and Q 2 ( V) we 
must calculate the following integrals (see appen
dix B): 
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INVESTIGATION OF NUCLEAR FISSION 
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FIG. l. Dependence of the ratio MQ2(N)/NQ 1(V) on the potential 

V of the discriminator (horizontal axis) for different values of ·a 
which are shown on the curves). The potential is in units of b-1 
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FIG. 2. The solid curves show the dependence of the number 
of true fissions (Q1M-I), and the broken li.nes. The depen-
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dence of the number of false fissions, associated with t te super
position of oc-particles pulses (Q2N-l) on the potential V 
of the di<:criminator (horizontal axis) for different values of a , shown 
on the curves, in the case M't' :o 10-4 N't' = 10-3. The potential is 

in units of b-1 

"+ioo 
Naa.bf'-e-[l {' 1 [l ( +I) Q2 (x) = 2rti ~ exp{zx+~b(z+bf} (z +b)- (z +a)- a. dz, 

a-ioo 

Q1 (x) = Un (x) + U12 (x), 

"+ioo 

u11 (x) = (27ti)1 % ~ eHQ2 (z) (z +a) (z + b)l dz; 
a-ico 

a+ioo 

u12 (x) = (27ti)1 % ~ ez·~Q2(z) (z + a) (z + b)2 dz. 
a-too 

(19) 

(20) 

(2J) 
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By virtue of the fact V {3 b << l for values of V 
of practical importance, we can obtain approximate 

expressions for Q 1 ( V) and Q 2 ( V) in the form 

Q1 (V) ~ M exp {- (M" + bV)}. 

X (Va)N~ (Vb)M~ (1 + bV); 

Q2 (V) ~ Nexp {- (/~'h + aV)} 

X (lfa)N~(Vb)M"". 

(22) 

(23) 

Equation (22) gives the number of readings of 
true fissions, and Eq. (23) gives the number of 
false fissions, connected with the superposition of 
pulses from ex-particles, both per unit time. 

In Fig. l we have plotted the dependence of 
MQ 2 ( V) / NQ 1 ( V) on the voltage of the discrimi
nator for a given value of M/ N and for difference 
values of a/ b. It should be noted that the voltage 
b- 1 was chosen as the unit voltage. If the value 
of a/ b is known from experimental data, then we 
can easily find the best recording conditions with 
the aid of Fig. l. The curves in Fig. 2 show the 
dependence of the number of true fissions and 
false fissions (dotted curves) connected with the 
superposition of pulses from ex-particles, on the 
voltage of the discriminator for various values of 

a/ b ( b - 1 is taken here to be of unit voltage). 
It should be noted that these calculations have a 

much more general character and can be used suc
cessfully in the analysis of the results of an arbi
trary discriminator amplitude. 

At the present time there are no reliable experi
mental data on the distribution law of the amplitudes 
of pulses from ex-particles and fission fragments, 

and therefore we used an exponential ( as a very 
general) distribution law . 

APPENDIX A 

Let F ( t) be the distribution function of time 
intervals between two successful voltage pulses. 
If we note by G n ( x) the probability that the voltage 
on the output resistor at the time of time of realiza
tion of the nth pulse be less than x, an~ consider 
an exponential decay ( with the law e -t -r) of the 
voltage between two successive pulses, then we 
can describe Gn (x) by the following recurrence 
relation: 

(Al) 
oox 

0 n (.x) = ~ ~ On-d(.x- y) elf'] dF (t) dH (y). 
0 0 

With the help of the Laplace-Stieltjes representa
tion, we get from Eq. ( Al): 

00 

gn (z) _:_ -h (i) ~ gn_I(ze-li-:) dF (t); (A2) 
0 

00 

g" (z) = ~ e-zx dOn (.x), (A3) 
0 

00 

h (z) = ~ e-z.r dH (.x). 
0 

If lim in( z) ---g ( z) for n __.ex; then we have the 
following integral equation for g(z): 

00 

""ji"(z) = Ii (z) ~ g (ze- 1~'") dF(t). (A4) 
0 

From Eq. (A4) we can determine the distribution 
function G (x), with the help of which we can easily 
find the distribution function R (x ), i.e., 

R (x) =I,~ {1- F(t)} 0 (xe1i~) dt, (AS) 
0 

where 
co 

/, = ~ {1 - F(t)} dt. (A6) 
0 

For an exponential distribution of the intervals 
between successive pulses (F (t) = 1 - e-NI) Eq. 

(A6) coincides with Eq. (3) from Sec. l. 

APPENDIX B 

In Eqs. (19)-(21) it was necessary to determine 
integrals of the following type: 

<P (x) = (2 'ITifl (Bl) 

'a+ioo 

X ~ exp{zx+~b(z+bf1} 
a-ioo 

Assuming that {3 bx << l and {3 < ex « l; and with the 
aid of the rapidly converging expansion 

00 

exp {~b (z +be}= ~ <~~!m (z + b)-m 
m=O 

calculation of the integral ( Bl) reduces to the 
determination of the following integral: 

(B2) 

a+ioo 

X ~ ez.r (z + a)-<r+a) (z + b)-(mtl+ll) dz. 

cr-ioo 
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It is not difficult to show that the integral (B2) 
has the form (B3) 

x'm +P·-1 
<Pm (x) = e-ax r (vm + fl.) 1F1 (vm, '~m + p., ex), 

where 

'lm = m + l + ~' f.L = r + IX, 

X e =a -b, 
(B4) 

and 1p1 (vm, vm + f.L, ex) is the degenerate hyper-

geometric function (see Ref. 3). In this way, Eq. 
( B l) is represented in the form of a rapidly con
verging series: 

Making use of Eq. (BS), we get for Q1 ( V) and 
Q 2 ( V) the expressions 

(B6) 

co 
. (W)k V"'+i3+k 

X 1F1(~-t-k-t-l,~X-t-~+k-t-l, eV)+bV ~ k! r(oc+f1+k+Z) 
k ~o 

and 
X 1Ft(~+ k + 2, IX+~+ k+2; eV)} 

It is not difficult to be convinced that for suffi
ciently small values of oc and {3 : 

where 

Furthermore, 

1 

~ k ~ tk-lecVt dt 
0 

co h 

- IXk ~ Am+! (cV)m 
m=l (m + k)[1 -t-(oc + [1) A~+I] Iii! 

(B8) 

(B9) 

(B7) 

If we neglect terms which are linear in oc and {3 
we get 

Q1 ( V) ~ M exp {-(M-e-t- b V)} (BlO) 

Q2 (V) ~ Nexp {-(M-e+ aV)} (Bll) 

With the aid of Eqs. (B8) and (B9) we can esti
mate the inaccuracy of Eqs. (BlO) and (Bll). For 
the values M T= 10" 4 and NT= 10· 3 this inaccuracy 
is less than 2%. 

3y. A. Ditkin and P. I. Kuznetsov, Handbook of Opera
tional Calculus, Moscow-Leningrad, 1951 . 

Translated by R. T. Beyer 
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