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Certain relations are presented which make it possible to change at any stage of a 
calculation from anticommuting matrices to Kerc~mer matrices. The paper shows the 
connection between the iLl' the matrices of the irreducible representation of the Kem­

mer and Dirac algebra, and also thP Tarnm matrices. 

l. TRANSITION FROM MATRIX TO FIELD 
DESCRIPTION 

I N a previous paper 1 we have introduced the 
basic operators which convert from undor matrix 

notation to the usual tensor notation. The scalar 
projection operator R, which has the property 

(l) 

can obviously be expressed in terms of the reflec­
tion matrices R"" = 232 -/ 

lu. 4 

R = (1/2)4 Jl (!- Rl'-) (2) 
p=l 

(Reference 4 contains an evident error in the coefficient). 
ny expanding the product, one can also obtain for 
R the formula 

where 

4 4 -1 

Ml = 2j R:L• M2=~ _LR,Rv. (4) 
IJ.=l p.,--p V=l 

4 4 4 

M3 = R5Ml = ~ ~ ~ RpRvRp. 
(5) 

U.'f' V 'f' p~l 

The matrices/, Ml' M2, R 5M1 form the center 
of the Kemmer algebra, the quantities which com­
mute with all elements of G 16 being 2 

'The traces of the matrices M 1, M 2 , M 3 vanish. 

The pseudoscalar operator R, with the property 

(6) 

can be obtained from R by means of the generalized 
Larmor transformation 1 R = l\Rr5 • 

1 A. A Borgardt, J. Exptl. Theoret. Phys. (U.S.S.R.) 
24, 24 ( 1953). 

2 N. Kemmer, Proc. Roy,.Soc. (London) 173A 94 (1939). 

Roth these operators, by their definition, satisfy 
the obvious relations 

Rn =, R, R" = l?, Sp R = Sp R ~--= 1. (7) 

In working out the commutation relations between 
the I~ and the operators M 1, M 2 , __?ne i:' forced to 
introduce the group of matrices 1'1'-, () 16 ; this 
is reasonable sin~ t~ commutative group R11 
connects I'11 and 1 11(1 11 = R 111 11, n. s. * ): 

{ri'-Ml} = 21\, 0'\,.Ml} = 2ru., 

[rp.M2 ] ='- 2(M1l\.- I'p), 
(8) 

l f;~M2J =- 2 (Mlr(L- 1\), 
{I\Ml} === (i\Ml} = [r5M2] = [i'5M2J = 0. 

With the help of these equations one can ob­
tain the commutation rules between the 111- and R: 

(9) 

and with the help of the latter one can prove that 
the vector operator 

k0- 1A '¥ = •JJ 
fJ. I !J.' 

(10) 

is equal to 

(ll) 

Ry performing the Larmer transformation on the A , 
we obtain the pseudovector operators. These ope~a­
tors have the obvious properties: 

A~ = Av-• fl~ =AI"' Sp Au = Sp A" == 1. (12) 

The rules for commuting Ap, Ap. with the r f1 
and with each other, and also the analogous rela­
tions for the ten~or projection operators can easily 
be worked out from the formulae given above. 

* un. s/' means no summation. 
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2, TRANSITION TO MIXTURES AND PURE FIELDS 

It follows from (11) that the sum r Jl~r J1 extracts 
from the undor* the matrix vector k0 0, '/ 0 ). If 
we express the operator 1 I in tern1s of the 

~Au. 

matric~s f3 we obtain the quantity {3, which was 
at first intfoduced by Harish-Chandra 4 • Now it is 
easy to extract from the matrix equations in terms 
of the r ' the part relating, for example, to a pure J1 . . 
scalar field. 

If we construct the 16-dimensional unit matrix 
I from the scalar, vector, pseudovector, and pseu­
doscalar unit matrices, /(s), f(l'), /(v) anrll(s), 
l(s), we see that the extraction of the pure scalar 
field from the 'l' field is accomplished by the opera-
tor /(s) 4 

I(s)=R+~r.,.Rrp. 03) 
[L=l 

The addition of R +I (s) to the 16-dimensional 
unit marix obviously extracts the pseudovector 
field 

I (v) =I- I (s)- R. ( 14) 

The pseudoscalar and vector unit operators are 
obtained from /(s) and /(v) by a Larmor transforma­
tion. 

Theequations derived above can be used to ob­
tain from the general equations 

for example, the equation of the pseudoscalar 
field 

( 1\d 1 ax~..- k0 ) klr + k 0I (s) '¥ 

= I(s)Q- k.Q. 

(lS) 

(16) 

In the equations for mixed fields we can use at 
the same time both sets of anticommuting matrices 
r and f ' and construct from them two reducible 
re~resent~ions of the Kemmer algebra 

~p. = 1/2 (rl, + rp.), ~~ = 1/2 (r~. -- r:,), (17) 

* Here and in the following we use the term "undor" 
to denote a matrix which has as elements a scalar, a 
vector and the components of all completely antisymmetric 
tensors in four-dimensional space (total number 16) (cf, 

Ref. 3), 

3 F, Belinfante, Physic a 6, 849, 870 (1939). 

4 Ha-ish-Chandra, Proc. Roy. Soc. (London) 184A, 
215 (1946). 

where[I'p.l\] = O.In this way we are led to wave 
equatwns of the type 

[112 ( l'v + f\) r) / UXt.. + kol lf:J' = Q. (18) 

3. COV ARIENT FORM OF THE HAMILTONIAN 

The use of Hamiltonian equations, instead of 
relativistically symmetric ones like (15), in explicit 
calculations has a number of substantial advaTJ.­
tages. However, this method does not satisfy the 
covarience requirement of modern theory 5 , because 
of the way the time coordinate is singled out. We 
introduce therefore a three-dimensional hypersur­
face a with a normal unit vector llp., n~ = -I. Any 
four vector A p. can then be resolved into a longi­
tudinal part Al and a transverse part AT by 

u p. 
the relations ' 

One verifies immediately that this resolution is 
correct and unique, since 

Similarly we can form the matrix vectors 1 f1 and 
Rfl the purely longitudinal quantities 

l'L = <Lt.. I\, RL = 2[31_- I. (20) 

The properties of these matrices follow from 
their definition: 

(21) 

The matrix R L performs the transformation of 
the undor 'l' which represents a reversal of the 
direction of the normal to the hypersurfaces, and 
the operator 1/ 2 (/ + R L) is therefore related to the 
separ<tion of the field quantities into longitudi­
nal and transverse parts. It may be calculated 
in the following way. We introduce for the f3 the 
representation 1/ 2 (f ... +fp); then f1 

where 

From the definition of R we find that 
L 

1/2 (/ + RL) = 1/2 (/ + llvllaTJ.a). 

5 J, Schwinger, Phys .Rev. 74, 1439 0948), 

(22) 

(23) 

(24) 
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The commutation relations and some other nee- essary equations are given below: 

[T.,.vip~] = 112 (- (I'pr 1'-- r 1'-I\) Ov~- Wrrv- f'vf\) Op.p 

+ (I'vl'p- rp.i\) op:r + (I'.,.r~- r.,f~'-) ovp), 

{I'p.Tvp} = I'vopp + r~.op.v. {f'p.fvp} = i'vou.p + I'pop.v• 

[RsTp.v] = [R.,.Tvp]p.+v, p = {Rp.Tp.p}p.+P = {I'sTp.v} = 0, 

t.,.~.r~. = 112 (6Ji ... - M1I'u.). r~~..f\ = 112 (6I' 1'-- M11" IJ.). 

The symmetric tensor operator T'"v forms a 
density, which is conserved in the absence of 
sources for the: field. Indeed, the equations 

(r~..a 1 ox,, + k0) 'F = o, 

(i'~.a I ax~.+ k 0) ':F = o, 

(- rfa I ax~.+ k 0) qr+ = o, 

(29} 

case of the field described by the equations 

[ 112 (r~.. + r~.) a 1 ax~. + kol w =0, 
this requirement is satisfied by the undor 

s<±> (x) = (112 ko) [k~ + t~.a 02 1 OXt. OXa 

- ka (I\± f\) a I OX~o] Ll (x), 

wher~ 

(25) 

(26) 

(27) 

(28) 

(31} 

lead to the continuity equation 
Ll (x) = (27tt3 ~ eik,x sin (cV~) t (dk) .. (32) 

c Vk2 +k2 
0 a (l_Y+ (f'p.I\ + r~:F~..) 'I') I ox~.= 0, (30) 

i.e., the conservation law for the energy-momen­
tum tensor of the field described by ecpations (29). 
The complete qt field, with the anticommuting velo­
city matrices rfl, possesses an energy-momentum 
«!ensity operator o£ the form r 11r v· The operator 
T IL'V enters also into the commutation laws for the 
components of '1'. The commutator must he a solu­
tion of the wave equations of first order. In the 

For a field with an anticommutive algebra we 
obtain from (31), as expected, 

It is convenient to express the commutative 
laws by resolving 'I' into a potential '1'1 and a ten­
sion '1'11• They then take the form 

[l¥;1-II (x')," ':F~1 (x)] = - (ihc2 12) (k~Oot[> + T~~ r;, 02 I ox~. OXa) Ll (x- x'), 

['F-;1-1 (x'), 'F~ (x)] = - (ihc 2 12) (6. 13 + k;2 T~~ r> i121 ox~. OXa) Ll (x- x'), 
[l¥;1-11 (x'), qr~ (x)J = (ihc2 12) (r" + r~.)" 13 (o 1 ax~.) il (x-x'). 

(34) 

The transition to a field with a purely anticommu­
tive algebra can he carried out by omitting the 
terms with the alternative sign and doubling the 
even ones. 

Be1:ause of the covariance of the division of 

the operator d / OXp. into a longitudinal and a trans-

verse part, the covarient form of the Hamiltonian 
equations is 

((he I i) a I OXL + HoL) ':F = QL, 

((he I i) a I OXL + Hti) qr+ = Qt, 
(35) 

where 

HaL= -(ihci2)[I'}.ra]1Zp.Oioxa]- lJai'L, QL = -I'LQ, (36) 

(37) Htr = - (inc I 2) [I',.rcr( n [),0 I OXa] + <EarL Qt = + rr Q+. 
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In the equations of mixed Kemmer fie 1~ the r 11 
must, as usual, be replaced by 112 (I',.+ rp.). 

4. CONNECTION BETWEEN r 11 AND FOUR­

DIMENSIONAL QUATERNIONS 

The separation of the wave function into a poten­
tial and a pressure by means of the operator 
1/2(/ ±R 5) allows, besides the transition to photon 
theory, also the introduction of contracted, eight­
row anticommuting matrices . Strictly speaking, 
there is no need to number the components of 'JII 
and wn differently in the equations 

J' d'f"11dX + 'f"II = QII 1. A ' 

(38) 

because of the difference in the superscripts. We 
may lable the components of 'PI and 'Jill by the same 
set of numbers, if we change from 'PI to a, new 

function '¥1 = ( 1/ i) r 4 '¥1• It is natural that the ma­

trix r 4 has to be used for this purpose' since this 
is just the matrix which interchanges the canoni­
cally conjugate variables 'f"I and 'f"II ('¥+ R5r 4 'f" 
is an action density, i.e., an invarient product of 
canonical coordinates and momenta). Equation (38) 
can now be put into the form* 

£11JJ'I I edt + r'V'f"T + 'f"II = QII, 

- a'f"II I edt+ r'V'f"II + k~'¥1 = Q1, (39) 

where Q1 =· (1 I i) r4Q1, land the eight-row matrices 

r' a-e defined by the relations 

r'=(lli)rJ'./(8) (40) 

and satisfy the anticommutive algebra 

112 {r;r~}- aik. 1 = o. (41) 

The product of all three matrices r 'i gives a ma­
trix which commutes with the whole three-dimen­
sional group G 8 formed by I, the r 'k and their 
products 

(42) 

From the definition of r 0 follows its main property: 

"' In order to make the numbering of the elements of 
'YI 'YII continuous, it is better to choose a special 
representation, in which 'Y = (~;, <ji, i6, ~. kot. ko<\lo. 

112 [r;r~] = if0r;. (43) 

(i, k, l being a permutation of 1, 2, 3). The 
group as ([fi, rk1 = o;· ~an be obtained by 

forming in analogy with (40), the eight-row matri­

ces l\ fcom th.e r4 r~<. The reflection matrices 
R k are formed in the usual way 

Rn = 1\r;, (n.s..) (44) 

their properties in relation to G8, G 8 being the 
same as in the 16-dimensional rerresentation, 
except for the following new relations, which 
are absent in the latter case 

(45) 

The scalar and pseudoscalar projection opera­
tors now cannot be separated (note that the Lar­
mor transformation matrix r ii. commutes with r ,k !) 
and both occur in the form of the operator 

3 

R == Rn = (112) 3 I1 (I+ Rh) 
k=l (46) 

3 

(the operator IT (/ _ Rk) ==:: 0 
k=l 

vanishing identically). The 

vector projection operators are found as usual: 
Ak = I'~Rl'~ (n.s.), but the vectors and pseudo­

vectors are again undistinguishable. 
The eight-dimensional representation r 'k is .re­

ducible, and we can extract from the con'tents of 
G 8 three anticommuting four-row matrices, ' 
which belong to the group G 16 of the Dirac matrices 
of electron theory. 

It would now be possible to go directly from 
equaion (39) to a pure quaternion notation, but we 
shall make this transition by sta-ting directly from 
the original wave equation 

We now introduce a wave function which is com­
plex even for a neutral field, letting f s play the 
pll't of V--I: 

<I>= (I- I\)'¥. (48) 

The equation 

(49) 
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which follows. from (48), shows that one half of 
¢repeats the other, apart from a .sign. To spell 
this out, split ¢ into a potential and a tension 

rD1 == ( 1/2 k 0) V - f<5) <J\ 

<l>u = 1/2 (/ + R5) w. 
(50) 

Making use of (49), we then obtain 

1\<D1 = <1}, 1\(IP = -- rrii (51) 

If we now also split ¢I and ¢II into parts by 

means of the relations* (52) 

. 
we find that I>!) I = c.?l' and r .'.()11 = - (J)II'. There-

·> I I 01 I 

fore -~I, ?II are e qmvalent with :;;I', rt1l' 

We now express the wave equation in terms of 
~and cpll: · 

(- i/ cr41\a I at+ l' V') cp1 + 'f'II = qii, 

( + i/ cr4I'sa I at+ i; V) ·.;Y + k~-fll = q1• 

We multiply both equations by r 4r 5 and remember 
the properties of r 4 and r 5 when operating on cp1 

and Cf!II· We find finally cr 4 leads t 0 an identical 
labelling of the components of cp1 and cpii) 

·r-c 1+ 1I __ Il t'O*·u+k2,.,_q1 (53) t u 'f rf -- q ' -? n~ --- ' 

and 
1 I ( ., 'V } ~ I -- 0 "' " . .·., 
;2lijil;: - )ih --~ ' lilh _-_: --~i{' (54) 

The three matrices Yk are connected with the 
Dirac matrices in the Kramers representation 6 by 
the relations 

Amongst the elements of the same irreducible 
representation of G1 r. there exist three more ma­
trices which have the same properties as the yk' 
but commute with them; they are 

* This division is already not covariant; for covari­
ance one has to use the operator 1/2 (I± Rl.), \cf. 
Sec. 3. The further conclusions remain, since 
{T5RL} = 0. 

6 H. A. Kramers, Proc. Roy. Acad. Amsterdam 40, 
814 ( 1937). 

By carrying out similar operations on the equa­
tions 

we can show that their reduction to a four-row no­
tation gives the equations 

·- 1 , II ... If 
l 0 'f J- 'f = = q , · II q I -I [ o ·-r + ko 'f =-= q . (57) 

Both systems (53) and (57) are equivalent to 
the corresponding Klein equation by virtue of the 
identity 

0 '' ;-: - o- •i• 0' 'r,9 ' .:>o I q -t 
L_j - ' = - v- -;- u-; c- a . (58) 

Besides the condition of mutual commutability, 
a connection between yk and yk can be estab­
lished by means of the reflection operators 
rh = 'fk'Ck (n.s.). The properties of the rk 
are the usual ones, but unlike the situation in 
the case of the 16-dimensional representation, 
multiplication of the rk does not take us out of 
the frameoork of the four quantities (/, rk) because 

of the relations \'"'·T, =- i'( ·:[.--[ "" -- i·' · 
Therefore 1 ' ' l• ' k 11 ' 

r;rk = rz, rir2ra = 1' M1 == JV12. (59) 

The projection operators have the same proper­
ties as the corresponding operators in the 8-
dimensional representation (see above). 

The elimination of the (non-covariant) longi­

tudinal components of cp1 and cpll is done by 
means of the operator 

T = T" = 1/2 (I- R) 
3 

= ~ ·;~<Rrh= 1/4(3+M1 ), 
h=1 

(60) 

which converts the anticommuting four-row matrices 
into three-row matrices of the three-dimensional 
irreducible representation of the Kemmer algebra: 

(61) 

P~~~-f-888 'B ' 0 0 if'hf'l , z, k, i - o;k, 1 -- ozh:J; = . 

Since the matrices Yk satisfy, in addition, the re­
lations Pi~h = - ipt ;\they can be transformed into 
Tamm matrices 7• · 

In this variant of the theory there is no possi­
bility of a Larmor transformation, but here again 
the anticommuting matrices 'l~t• 1;, may be ex­
pressed, similarly to (17) in terms of two orthogonal 
sets of matrices f3 k: 

7 I. Tamm, Dokl. Akad. N auk SSSR 23, 551, 1940. 
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[:' ~fl. (62) 

It must be pointed out that the four-dimensional 
quantities of the type A= A 0 + rA are not real 
quaternions, similar to Hamilton's quaternions in 
three-dimensional space, because of the special 
treatment of the time. This is due to the pseudo­
Euclidean character of the Minkowski world. 
For the same reason the result of the multiplication 
of the Cauchy-Riemann equations (53) is a hyper­
bolic equation. 

In this way the present formulation of the theory 
may, with good justification, be called a pseudo­

quaternion theory, at least in the case of non-static 
fields. 

CONCLUSIONS 

l. There exist relations which make it possible 
to use anticommuting matrices, not only in the 
theory of mixtures of meson fie Ids, but also for 
''pure" fields. 

2. It is possible to replace the sixteen-dimen­
sional reducible representation of the Dirac algebra 
by an eight-dimensional one. 

3. One may use, as kinematic matrices of pho­
ton or vector meson theory, the reflection matrices 
of electron theory, 14• 'hT2I:l and 'IIT2T3T4·· 
The connection of these with the Tamm matrices 
has been found. 

Translated by R. Peierls 
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J, Exptl. Theoret. Phys. (U.S.S.R.) 30, 262-271 (1956) 

The dependence of the resistance and the Hall effect for zinc on the magnitude of the 
angle between the axis of symmetry of the sixth order and the magnetic field is invcrsti­
gated for magnetic fields of up to 25,000 oersteds and for temperatures of 4 and 20 K. The 
possibility of explaining the observed regularities within the framework of present day 
theory is considered. 

INTRODUCTION 

A VERY large anisotropy of the resistance in a 
magnetic field has been observed for a number 

of metals. The resistance of a single crystal in a 
transverse magnetic field may change by 15 to 30 
times when it is turned about an axis parallel to 
the current. Such a strong anisotropy, observed 
for certain orientations of single crystals of gallium, 
zinc, cadmium and tin l-S, is unexpected, since in 
the absence of a magnetic field the anisotropy in 
the conductivity is small--of the order of tenths of 

1W. J. de Haas and J. W. BJorn, Physica 2, 952 (1935). 
2B. G. Lazarev, N .M. Nakhimovich and E. A. Parfenova, 

J. Exptl. Theoret. Phys. (U.S.S.R.) 9, 1169 (1939). 

3E. Justi, J, Kramer and R. Schulze, Physik. Z. 41, 
308 (1940). 

4 
E. S. Borovik, Dokl. Akad. Nauk SSSR 69, 767 (1949). 

5 E. S. Borovik, J. Exptl. Theoret. Phys. (U.S.S.R.) 
23, 91 (1952). 
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a percent. 6 

The strong anisotropy is manifested by the oc­
currence of deep narrow minima, which we may call 
"anomalous minima," in the resistance, as plotted 
against angle of rotation. The position of the crys­
tal which corresponds to the appearance of such an 
anomalous minimum is distinguished, as a rule, 
not only by the magnitude of the resistance, but 
also by the character of the dependence of the re­
sistance on the magnetic field. In large fields the 
dependence on the field is rrot found to he quadra­
tic, hut weaker, approximately linear. 2 • 5 

It has previously been shown 7- 9 that the delayed 
growth of the resistance in a magnetic field is 

6Halis, Collection of Physical Constants, ONTI, 
Moscow-Leningrad, 1937. 

7E. S. Borovik, J, Exptl. Theoret. Phys. (U.S.S.R.) 
23, 83 (1952). 

8E. S. Borovik, Dokl. Akad. Nauk SSSR 75, 639 0950). 
9E. S. Borovik, J, Exptl. Theoret. Phys. (U.S.S.R.) 27, 

355 (1954). 


