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tillation counters, 16 although a detailed com
parison of the present results with those would be 
difficult. 

In the above we have proceeded from the entirely 
reasonable requirement that close-pair stars should 
be created simultaneously. To be perfectly logi
cal, however, we have not ruled out the possibility 
that the close pairs are formed with a delay time 
which is beyond the resolution capabilities of this 
method. This question can be resolved when a 
considerably greater amount of experimental data 
is accumulated. In the event of a negative result, there 
would seem to be a fundamental contradiction between 
the statistical analysis and the results of the present 
work; this would seem to indicate the presence of some 

16]. B. Harding. Nature 169, 747 (1952). 

methodological error in the statistical analysis. 
In this connection factors such as nonuniformity of 
exposure, inhomogeneities in the amount of AgBr, 
differences in the thickness of the emulsion in dif
ferent parts of the plates., and the higher counting 
efficiency in the vicinity of neighboring stars as 
compared with single stars should be considered. 
A detailed analysis of these and similar effects 
should be the subject of a special report. 

The authors are indebted to their colleagues at 
l\IFTI for assistance in performing this work and to 
A. A. Mizel' kovskii and R. l\1. Gryzunov who 
scanned the plates. The authors also wish to 
thank Prof. N. A. Dobritin for taking part in the 
discussion of the results. 

Translated by H. Lashinsky 
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We study a generalization of the kinetic equation of L. Janossy for the case where the 
physical quantity t"(t) does not remain constant between two consecutive jumps, but 
changes in accordance with some causal law. The equation that is introduced can be 
successfully applied to various problems concerning stochastic processes in cosmic 
radiation. 

I N the present paper we consider some problems 
of the theory of stochastic processes, which 

play a very important role in nuclear physics and 
in the theory of cosmic radiation 1• We shall not 
touch upon concrete problems, since there are a 
large number of papers in this direction in the litera 
ture 2 ; however, a unified treatment of these prob
lems is lacking. 

For the stochastic description of an arbitrary 
physical process (energy loss, scattering, etc.) we 
must first of all determine the distribution function 
of the physical quantities which play a decisive 
role in the given process. If it is known that the 
value of some physical quantity t"(t) at the instant 
of time t is equal to x, then in certain kinds of 

1 
L. Janossy, J, Exptl. Theoret. Phys. (U.S.S.R.) 

26, 386, 518 (1954). 

2 A. Bekessy, L. Janossy and L. Pal, Magyar. Fizikai 
Folyoirat (in press). 

stochastic processes (processes without after
effect*) it is easy to determine the rrobability that 
the value of the random variable t"(T) is greater 
than y at any instant of time T?: t. Let us desig
nate this probability [the distribution function of 
the random process t"(t)lby F(t, x; 7; y). As is 
well known, the function F(t, x; 'T, y) is determined 
by two integro-differential equations, introduced 
by Kolmogorof£ 3 and Feller4. 

Let us denote by P(t, x; y) the probability that 
the random process t"(t) discontinuously changes 
its value to~ (t + 0) <=: y under the condition 
that a jump occurred at the instant of time t, and 
that immediately before the jump t"(t- 0) was 

* Processes without after-effect are often called Markoff 
processes. 

3 A. Kolmogoroff ,Math. Ann. 1 04, 415 (1931). 

4 W. Feller, Math. Ann. 113, 113 (1936). 
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234 STOCHASTIC PROCESSES IN COSI\IIC RADIATION 

equal to x. Let Q (t, x) M + o (M) be the 
probability that in the time interval (t, t + L1t) 
there occurs at least one jump of the random proc
ess ~(t) [ o C~t) is the probability that in this 
interval there occurs more than jump of the quan
tity ~(t)] under the condition that immediately be
fore the jump ;; (t - 0) was equal to x. In physi-

cal applications (Xt, x) is called the "total cross 
section" and the expression w (t, x; y) dy =, 

Q (t, X) dPy (t, x; y) is called the "differential 
cross section". 

The K olmogoroff-Feller equations, which de
termine the distribution function F(t,x; T, y), have 
the following form: 

aF(t,a~;-r, Y) = Q(t, x) {F(t, x; "C, y)- ~F(t, z; 't, y)dP, (t.x; z)}; 

a!_'Jf.c_x; ";"' y J 

I 1) 

= ~ Q (<, z) dF.z (t, x; "• z)- ~ Q ('r, z) P ('t, z; y) dFz (t, x; "C,Z). 

\Y! 

(2) 

The equation (l) is especially suitable for solv
ing a whole series of problems of case ade theory l. 

Janossy 1, using the method of the "first collision", 
worked out a very graphic method of mtaining a 
kinetic equation of the type (l) in the case of proc
esses that are homogeneous in time. 

l. In connection with certain problems in the 
statistical theo:ry of the penetration of elementary 
particles throug;h matter, one needs a generali
zation of the Kolmogoroff-Feller equation for the 
case where the physical quantity ~(t) does notre
main constant between two consecutive jumps, but 
changes in accordance with some causal law, i.e., 
if it is known that ~(t) = x at the instant of time 
t, then after a tilme u the random variable ~(t + u) 

takes the value f(x, u), under the condition that the 
interval (t, t + u) lies between two consecutive 
jumps of the random process. It is evident that 
without the introduction of new random quantities 
the Markoff character of the process can be pre
served if and only if the function which describes 
the causal character of the random process ~(t) 
satisfies the functional equation 

The equation (3) was studied in detail by Ac zel 5 • 
As the basis for his study it is easily shown that a 
function which satisfies equation (3) has the follow
ing form: 

f(x, n) = H {H-1(x) + u}. (4) 

Here it is assumed that the function H(x) has an in
verse function H- 1 (x). Indeed, one can easily con
vince oneself that 

5] Aczel, Pub). Math. 1, 243 (1950). 

i.e., that 

H {H-1 (x) + u1 + uA= f(x, u1 + u~). (5) 

It is evident that the functionsxe±l.u, x((I -i='Axu), 
X± l.u, etc. satisfy Eq. (3). 

In connection with statistical problems con·· 
cerning recording of nuclear fission using an ioniza
tion chamber 6 we studied the solution of the ki
netic equation for the case where the physical quan
tity ~(t) changes in accordance with an exponen
tial law between consecutive jumps, i.e ,f (x, a) = 
xe-1• '. The generalized equation is also easily 

written for the case where all that is required of 
the function f(x, u) is that it satisfy the condition 
(3). 

First of all we determine the distribution func
tion 1 (t, x; t + !lt, z). It is easily expressed 
in terms of the functions Q(t, x), P(t, x; y) and 
f(x, u); i.e., 

F(t, x; t + M, z) 

where 

={I--- Q (t, x) M} E {z- f (x, !lt)} (6) 

+ Q (t, x) P (t, x; z) ~v + o (M), 

{
0, 

E ( z - z') ·oc~ l , 
if 

if 

z<z', 

z>z'. 

From the \'larkoff equations (see Ref. 7, p. 245), 
we obtain the following equations, using (6): 

6 L. Pal ,Magyar. Fizikai Folyoirat 3, 31 (1955). 
7 V. V. Gnedenko, A Course in Probability Theory, 

Moscow-Leningrad , 1951. 
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( :t - Q ( t, X) - g (X) ;~ } F ( t, X; 7, y) (7) 

+- Q (t, x) ~ F(t, z; "· y) dPz (t, x; z) = 0, 

{ (~": -+- g (y) d ~ } f (l, X; 't, Y) -- ~ Q ( 'C, Z) P ( ":, Z; y) d Fz ( t, X; ":, Z) 

= ~ Q(-r:. z)dFc(t. x; 7, z), 

(8) 

IYI 

where g (x)=--=(iJf(x, u)jdu) . 
u=-n 

If Q (t. x) =oN, P(t, x; y) = H(y- x)and 

F(t, x; 't, y) = R ('t_-- t, y), then, introducing the 

notation T- t = v, we obtain from (7) for the case 
f(x, u) = xe-"u the equation 

oR -r~.y'!!i = -- N{R(v, y) 
av iJy 

(9) 

- ~ R (v, z) dH (y- z )}, 

which coincides with Eq. (2), studied in Ref. 6. 
An analogous equation is obtained from (8) in the 
homogeneous case. 

2. In the II'eceding section we showed that for 
the class of random processes without after-effect 
the causal changes of the quntity ,;(t) between 
consecutive jumps (discontinuities) cannot be arbi
trary, but that the functionswhichdescribe these 
changes must satisfy Eq. (3) • In the theory of 
stochastic processes in cosmic radiation, one often 
encounters such random processes which cannot 
be described within the framework of Markoff proc
esses by using the distribution function of one 
random quantity. In these cases a description 
within the class of processes without after-effect 
can be achieved in principle with the aid of the dis
tribution function of several mutually dependent 
random variables. 

Thus for the stochastic description of the given 
physical system, we introduce the random quanti
ties~~ (t), ~2 (t), ... '~" (t).The study of such 
processes is of special interest in the case where, 
in addition to pur~ly discontinuous changes, the 
random quantities ~ 1 (t), ... , ~~~(t) can change 
in accordance with certain causal laws, i.e., if it 
is known that ~" (t) = Xn (k = I, 2, ... , n), 
at the time t, then after the time u the random 
quantity t~kes the value ~~~ (t + u) under the 
condition that the interval (t, t + u) lies between 
two consecutive jumps of the random vector 
F1 (t), ~2 (t), .... ~~~ (t)J. 

Let Q(t, Xt; ... 'Xn),lj,t o(/j,t)be the proba-

bility th'at in the interval (t, t + t) the state of the 
system, determined by the equations ~it(t) = Xh 1 

changes discontinuously, and P(t, x 1 , ••• , x,,.; 
YI•, · · .,y,) the probability that ~h (t + 0) = y,, 
(k c= 1' 2, ... 'n) under the condition that a jump 
occurred at the instant of time t and that imme 
diately before the .iump the equations ~h (t- (j 

~-' Xh were valid . Let us designate by 

F(t, xl, ... 'Xn; "· YI• ... 'Yn) the probability 

that ~" ( 't) ~ Yk· if it is known that at the in-
stant of time t the equalities ~k (t) '-= Xk 

(k = I ,2, ... , n) were valid. 

In an analogous way it is easy to determine the 
generalized Kolmogoroff-Fe ller equations 

{:t -Q(t,xl, ... ,Xn)- ~gi<(x1 , ... ,x,)u~Jx 
h 

X F(t, Xv · · ·, Xn; ":, Y1• ·. ·, Yn) + Q(f, X1, ... , X,{) X 

X~ ... ~F (t, Zl, •.. ' z/1; 't, Yv ... 'y/1) dP (t, xl, ..• 'Xn; Zl, ... ' Zn), 

{a~+ ]gh(yl. · .. , y")d~ }F(t, X1, ... , Xn; 't, Y1, ... , Y11 ) 
k h 

- ~ · · · ~ Q (':, Z1, .... Zn) dF(t, X1, ... , x,;'t, Z 1 , . •• , Z") =
(y, ... ,y") 

= ~ · · · ~ Q(r, Z1 , .•• , Zn)P('C, Z1 , •.• , z,.; y1 , •.• , y,.)X 

XdF(f, X1, ... , Xn; ":, Z1 , ... , Zn). 

( 1 Oy 

( 11 ) 
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In what follows we shall be concerned only with 
the first equation. If the process is homogeneous in 
time, i.e., 

F(l, xl, ... 'Xn; 't, Yl• ... 'Yn) 

=<I> (v, xl, ... ' Xn; Yt· ... Yn), 

then we obtain from Eq. (lO) 

{ ;V + Q (Xt, · · ·, Xn)- ~gh(Xl, · ·. , Xn) a~) 
h 

(12) 

X <I>(v,xt, ... , Xn; y 1 , ..• , y,J = ~ · · · ~ 'ZV(X1, . •• , x,; Z 1 , ... , z,) 

X <I> (v, Z 1 , ••. , z,.; YI> . .. , Yn) dz 1 , ••• , dz,, 

gh (x], ... , Xn) = ( a.rh(X[, ... , xn;uljau t=O' 
where 

W (x1 , ••• , Xn; Z 1 , ••. , Zn) dZ1, ... , dzn 
= Q (ft, X1, ... , Xn) dP (t, Xt, ... , Xn; Zl> ... , Zn), 

Q (Xt, •.. , X,.) = ~ · · · ~ W (Xl, ... , Xn; Zt, ... , Zn) dzl ... dzn. 

Equation (10) or (12) is a generalization of 
Janossy's equation 8 and has the advantage that 
it avoids difficulties connected with the appear
ance of one and the same quantity several times 
in the equation. In the next section, we shall 
show that the kinetic equation, studied in detail 
by Janossy 8, ils easily obtained from our equation. 

3. Elementary particles in traversing matter 
lose their energy and deviate from their original 
direction. For the stochastic description of the 
motion of a pa'ticle we introduce the following 
random quantities: ~1 (t) , the energy of the par
ticle, ~2 (f) , the angle between the tangent to 
the prqection of the trajectoryof the particle on 
the (x, z) plane and the x axis, ~3 (t) , the dis
tance of the particle from the x axis in the (x, z) 
plane, and ~4 (t) , the area determined by the 
projection of the trajectory of the particle on the 
(x, z) plane and the x axis. The quantities (3 (t) 
and ~4 (t) change continuously. From elementary 
considerations. it follows that 

+ 1/ 2 u 2 tg x 2 ~ x 4 + x 3u + 1/2n~x-2. 
Using Eqs. (12) and (13), we can write 

ra Q() a a1 
lav + Xl -X2 axa- X 3 ax4 f i}) (v, X, y) 

----

(14) 
= ~ w (x, z) CfJ (v, z, y) dz, 

8 L. Janossy, j. Exptl. Theoret. Phys. (U.S.S.R.) 30, 
351 (1956). 

where x = {x1, ... , X4} is a four-dimensional 

vector. The cross section w(x, z) has the form 

Since q (xl, X2; Z1, Z2) has a sharp maximum at the 
points X1 = Z 1 and X 2 = Z2 and its values are very 
small at other points, we can expand <l>(v, x, y) in 
powers of (zl- Xt) and (z2- x 2). In this way 
we get the following equation: 

(16) 

a2 a2} 
- 1/ 2 b (Xt) -;--2 - 1/2 cr (xJ) -0 2 <I> (v, x, y) = 0, 

ux1 x 2 

where a (x1), b (x1)and c; (x1) are determined by the 
following relations: 

a (x1) = ~ ~(x1 --- zl) q (xl, x~, Z1, Z2) dz1 dz2, 

b (x1) = ~ ~ (x1 -~ z1)2 q (xi, X2; Z1, Z2) dz1 dz2, 

c; (x 1) = ~ ~ (x2 ~- z2J2 q (xt, x2; Z1, Z2) dz1 dz2. 

Equation ( 16) was studied in detail in the work 
of Janossy for the case f> (x1 ) = 0. If we take 
into consideration the variance of the energy loss, 
then it is more difficult to obtain a solution of (16). 
However, in the neighborhood of the mean value of 
the random quantity ~ 1 ( t) , the solution of equation · 
q6) can be easily found. Indeed, if in the expres
sions a (x1), b (Xi), cr (x1 ) we replace x 1 by the 
mean value of the random quantity ~ 1 (f), then 
going from the distribution function <I> (v, x, y) to 
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the pro~ability density q;(v, x, y), and assuming that 

'1' (v, X, y) == ·~ (v, X 2 , X 3 , X;~; )'o, Ys• y,) 
X Z ( v, xi; Yd,we obtain the following equation 

az ('V, X1; Vt) 1 - a'·'('V X · J' ) 
------· - o= 7' b rx (•ZJ)] A ' I• I av 2 1 2 ox, 07) 

Equation (17) can be easily solved 9• With the 
initial condition X (0, x1 ; )' 1 ) = 0 (y1 - x1 ) 

we find that 

(18) 

9 L. Pal, Vestn. Moscow State University 6, lll (1953) 

'<' 

A ~=~a [x1 (s)] ds, 
0 

v 

B 2 == ~ b [x 1 (s)l ds. 
0 

(19) 

In the expressions for A and 8 2, x 1(s) designates 
the mean value of .;1(s). 

The determination of Tf v4 ) 

can be found in the work of Janossy 8 • 

For a practical application of the approximation 
in question we refer to one of some forthcoming 
papers. 

Translated by R. Silverman 
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