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COMPARISON of cross sections for charge ex
change ofK-mesons in hydrogen and deuterium 

can give valuable information about their spins and 
parities. Theoretical investigation can be carried 

out similarly to the charge exchange of 11-mesons 
in hydro~n and deuterium 1• At the present time, 
apparently, the existence of at most two different 
K-mesons h!S been established: e and r. 8-meson 
decays into two 11-mesons and consequently should 
have even parity with even spin and odd paritl 
with odd spin. Analysis carried out by Dali in
dicates that ?=meson apparently has odd parity and 
even spin. We shall consider the charge exchange 
of mesons with spins 0 and 1. 

In a general case the amplitude of charge ex
change of a me son with a proton is equal to 
.uP= a+ b; Here a and b are functions of mo
mentamd spins of meson before and after the charge 
exchange; ~is the spin operator. The amplitude 
of charge exchange with deuteron is expressed by 

up: 

Here t/J d is the wave function of the deuteron, 
t/J(r) is the wave function of two neutrons appear
ing as a result of the collision, ~ = (k - k J/2 and 
k and k 'are the momenta of the me son before and 
after the collision (1i = c = 1). 

The cross section for the charge exchange with 
a proton in terms of the amplitude is a p =a a. 

+ ab· a = ~ ab = b?: The cross section of ' a , a 

charge exchange with deuteron, summed over 
states of the two neutrons after collisions* 

ad= (a a+ 2Js a b) F_ +lis abP+, 

F ± = 1 ± (~I x) arc tg (x j ~). 

For x = 0: F+ = 2, F_ = 0. Here f = "'- 2/M 
is the binding energy of the deuteron and the bars 

denote averaging and summations over the spin 
states of the meson (if it has spin). 

We shall consider charge exchange with scat
tering at small angles. In this case x. << k and it 
may be assumed that k and k 'have the same direc
tion. We shall now consider several cases in more 

detail: 
l. Charge exchange of K·meson with spin 0 

without a change in parity. In this case a is a 
scalar, b is a pseudovector. However, since there 
is only one vector in the problem, k, and for the 

-construction of a pseudovector at least two vectors 
are necessary, then b = 0. We obtain ap = cra, 
cra=crar'_. 

For x = 0: crdlap = 0. 
2. Charge exchange of K-meson with spin 1 with

out a change in parity. Beside the vector k there 
are two other vectors (pseudovectors): j and .i ', de
termining the direction of the meson spin before and 
after the charge exchange. In this case b'""' [jj'] 

3. Charge exchange of K-meson with spin 1 into 
K-meson with spin 0 without achange in parity. In 
this case a= 0, b- j, -

4. Charge exchange of K-meson with spin 0 with 
a change in parity. In this case a= 0, his a vector 
(h '""k) and 

5. Charge exchange of K-mesons with spin 1 
with a change in parity. In this case b ~ k X [jj'), 

6. Charge exchange of K-meson with spin 1 into 
K-meson with spin 0 with a change in parity. In 
this case b ""'[jk], 

crp = cra + crb, crd = (cra + ~1 3 crb) P_ + 113 o·bF+. 

For x = 0: crd I crp = 2crb / 3(cra + cr1,). 
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* The corresRonding expression for crd in the article 
of Berestetskii 1 contains several misprints. 

1 V. B. ~restetskii and I. Ia. Pomeranchuk, Dokl. 

Akad. Nauk SSSR 81, 1019 (1951). 
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I N this communication we develop the theory of 
galvanomagnetic effects in metals, without 

making any special assumptions on the law of dis
persion of conduction electrons or on the form of 
the collision integral. 

l. An electron in a metal is here taken to be a 
quasiparticle carrying a charge e, with energy f 

and a quasi-momentum p; f is a periodic function 
of p, with the period of the reciprocal lattice. 
With an electron moving in a constant magnetic 
field H (H.~= 11 y = 0; 11 z =H) , f and 
p remain unaltered. Thus, in the momentum zone 

:: 
an electron moves along the curve 

e: (p) = const; Pz = const. (I) 

From the equations of motion, dp I dt = (e 1 c) [v, H] 
~v = V Pf) we obtain: 

t = - ( c I eH) ~ dl I v _1_. (2) 

Here dl represents an element of arc of curve (l), 
taken in the direction of motion, while v .L repre

sents a projection of velocity vector upon the plane 
(x, y ). The character of an electron's motion along 
a trajectory within the momentum zone actually 
depends on whether curve (I) is closed (i.e., 
whether it consists of a series of closed curves 
each of which is disposed within the limits of a 
single space in the reciprocal lattice)*, or whether 
it is open (i.e., whether it passes uninterruptedly 

through the entire rec~procallattice). If curve (l) 
is closed, then the transition along this curve is 

T = _ _ c_ rf, .!!.!.__ = _ 2r;m*c . m* = _1_ iJS . ( ) 
eH ~ v _1_ eH ' 2r. n: ' 3 

where S = S (e:, Pz) corresponds to the area of inter
section of surface <(p) =canst with plane p z = const. 

The quantity m* can actually be called the effec
•tive mass of an electron in a magnetic field. The 
sign of this effective mass (and of the period as 
well) depends on whether the energy within the sur
face dp) = f is smaller than f(m* > 0) or larger 
than dm* < 0); this criterion does not hold true 
for the intersecting curves. It should be noted . 
here that the concept of effective mass cannot be 
introduced for open trajectories. 

2. While describing the state of an electron in a 
magnetic field it is proper to use variables f, p z 

and a dimensionless variable -r = t/T 0, indicating 
the location of an electron in the trajectory (l) within 
the momentum zone (T0 = 2rrcmofeH, with m0 
representing the mass of a free electron). T 0 was 
introduced for the sake of convenience, so as to 
free -r from its dependence on H. The kinetic equa
tion for the distribution function of fin the variable 
chosen by us is 

a 1 · ilf • af • , ( a J ) _ "+ iJ Pz + iJ s' I -at - o. 0 " Pz s \ cT 
(4) 

nn studying a stationary case, the values or-r: Pz· e: 
are obtained from the equations of motion). Assum
ing that f = fo- efut!.;;E i• we align (4) along the electric 

field E .. Noting that i =evE; Pz = eEz, -r = 1 I T 0 , 

we obtam 

8!.\J; I o-r+ y\f'\)1; =yf~ (e)v;; 
(5) 

W'<Ji; =to (o<J!; I ot)CT; y =HoI H; 

where [ 0 represents the equilibrium Fermi function, 
t 0 represents the characteristic time of relaxation, 
and To (I-fo) =to. The limiting condition for Eq. (5) 
is represented, for closed curves, by the condition 
of periodicty (with a period of T /T 0) of the function 
tPi and, for open trajectories, by the boundedness of 
the function tjJ i" 

As the mean value of Eq. (5) we obtain 

(6) 

The prime in the above equation indicates thatthe 
mean value was obtained with respect to T. For the 
slos~d curves, assuming that 2r:n;Qv., = - iJpv I oo:, 
:!.r:mo'l'y = op.~ J o-r, we obtain :v~ = 0 (<X= x,y). 

3. We will find t.lte solution for E:q. (5) under condi
tions (6) for large fields (y « l), in the form of a 
series* with interval y. Computations show that 
for closed curves (l) 


