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THIS letter is concerned with the determination 
of the frequency of oscillations of electron 

plasma placed in a constant and uniform electric 
field£ 0*. 

We shall denote by F(r, v, t) a distribution func­
tion of the plasma electrons. This function satis­
fies the kinetic equation 

(}F e dF 
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where !(F) is the collision integral and E is the 
electric field specified by the plasma oscillations 
and satisfyin~ the relation 

divE= 47te ~ Fdv _ 47ten0 

where n 0 is the equilibrium density of the ions. 
The equilibrium distribution function F 0 of the 
electrons in the absence of oscillations has the 
form 2 
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wherew = mv2 /2T, ~ = (M!6m)(eE0l!T)2, m and Mare 
the masses of electrons and ions respectively, l 
is the mean free path of electrons and T the tem­
perature. If we assume that the distribution func­
tion F differs only slightly from F 0, we obtain the 
following equations for f = F- F 0 and the field 
E: 
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divE=47te~fdv, 

where the ·term f/Tphenomenologicallytakes into 
account the presence of collisions t Tis the aver­
age time between collisions). 

We seek a solution for the set of equations (1) 
according to Landau 3 in the form 

/(r, v, t) = ~ ACv, t) eikr dk, fk (v, t) 
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E (r, t) =-grad q> =- i ~ kq>k (t) eikr dk, 

and we obtain 
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where g(v) = h (v, 0) and the field E 0 is assumed 
to be along the x axis. 

In the following we shall be interested only in 
the plasma oscillatory properties which are deter­
mined by the so-called dispersion relation. The 
latter is obtained by setting the denominator of 
Eq. (3) equal to zero. 

It is easy to establish that even in the case of 
strong fields when ~ » 1, the ine~ality mO.vl e_E 0 

>> 1holds, where Q = V 4rrnue"lm IS the Langmmr 
frequency and v the average velocity of the_elec­
trons. Therefore we shall assume that mpv!eEo :;5> 1. 
Neglecting orders of E 0 higher than. the fi~st, and 
ca-rying out the integration in the drspersr?n rela­
tion over the velocity components perpendrc ular 
to the direction of the wave vector k we have 
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where w' = i (p + -;-l), n = k/k: u is the component 
of velocity along the wave vector k and 

co 

¢'1 (u2) = ~ f 1 (u2) 2udu. 
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ExpandingE:q. (4) into a series of powers of ku/w ', 
and retaining only the terms up to the fourth order 
of ku/w' we finally obtain the dispersion relation 
in the form 

(5) 
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where v2 and v are the average values of the 
square of the velocity and of the velocity vector 
of the electron. 

Eo ~ "f •) v = ~.- v- 1 (·u· d7J. 
clf/.u (6) 

S:>lving F: q. ( 5) for w 'we obtain 

From E q. (2) the Fourier components of the elec­
tric field vary according to the relation E = const. 
exp (ikr;+ pt). Since -w '= i(p + '/ 1), then Ek 

= const exp_ {-ht + ikr- iwt}, where 

1 k2i}J 1 3eE0k (8) 
<'-' = n + T n + (kv), 1 = ~:- L.mn · 

F:quation (8) determines the frequency and the 
damping of the plasma oscillations in the presence 
of the electric field. These are correct if k2·ifi ~ Ql, 

kv <<- !.1. . It is evident that the electric 
field decreases damping if the angle between the 

wave vector k and the electric field E 0 is less than 
rr/2. Powever, even in the case of strong fields, when 
~ >> 1 the inequality 3eE0 k/2m!.1 < 1 /'1:". is true. 
Indeed '1:"~ l/'l-;; where, in the case of strong 
fields,:V = (MJm)'l•(eE 0/jm)'1', and since k ~ !.1/ V, 
then (3eE0k I 2mD)T = V m 1 A1 < 1. 

We shall give the expressions for the frequency 
of the plasma oscillations in the limiting cases of 
weak and strong fields, assuming that the mean 
free path does not depend m the velocity of the 
electrons. In the case of weak fields ( ~ << 1): 

_ 1;2 5~ .. / 8 eE11kl , s = YI3T . 
w - n + 2!.1 + v 3n: ms m 

For the case of strong fields ( ~ >> J): 

The authors express their gratitude to Acade­
mician J, L. Landau for his interest in this work 
and to R. A. Demirkhanov and G. Ia. Liubarskii 
for discussions. 

"' Gordeev 1 has devoted an article to this problem. 
However, he uses an equilibrium function which does 
not satisfy the kinetic equation. 
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COMPARISON of cross sections for charge ex­
change ofK-mesons in hydrogen and deuterium 

can give valuable information about their spins and 
parities. Theoretical investigation can be carried 

out similarly to the charge exchange of 11-mesons 
in hydro~n and deuterium 1• At the present time, 
apparently, the existence of at most two different 
K-mesons h!S been established: e and r. 8-meson 
decays into two 11-mesons and consequently should 
have even parity with even spin and odd paritl 
with odd spin. Analysis carried out by Dali in­
dicates that ?=meson apparently has odd parity and 
even spin. We shall consider the charge exchange 
of mesons with spins 0 and 1. 

In a general case the amplitude of charge ex­
change of a me son with a proton is equal to 
.uP= a+ b; Here a and b are functions of mo­
mentamd spins of meson before and after the charge 
exchange; ~is the spin operator. The amplitude 
of charge exchange with deuteron is expressed by 

up: 

Here t/J d is the wave function of the deuteron, 
t/J(r) is the wave function of two neutrons appear­
ing as a result of the collision, ~ = (k - k J/2 and 
k and k 'are the momenta of the me son before and 
after the collision (1i = c = 1). 

The cross section for the charge exchange with 
a proton in terms of the amplitude is a p =a a. 

+ ab· a = ~ ab = b?: The cross section of ' a , a 

charge exchange with deuteron, summed over 
states of the two neutrons after collisions* 

ad= (a a+ 2Js a b) F_ +lis abP+, 

F ± = 1 ± (~I x) arc tg (x j ~). 

For x = 0: F+ = 2, F_ = 0. Here f = "'- 2/M 
is the binding energy of the deuteron and the bars 

denote averaging and summations over the spin 
states of the meson (if it has spin). 

We shall consider charge exchange with scat­
tering at small angles. In this case x. << k and it 
may be assumed that k and k 'have the same direc­
tion. We shall now consider several cases in more 

detail: 
l. Charge exchange of K·meson with spin 0 

without a change in parity. In this case a is a 
scalar, b is a pseudovector. However, since there 
is only one vector in the problem, k, and for the 

-construction of a pseudovector at least two vectors 
are necessary, then b = 0. We obtain ap = cra, 
cra=crar'_. 

For x = 0: crdlap = 0. 
2. Charge exchange of K-meson with spin 1 with­

out a change in parity. Beside the vector k there 
are two other vectors (pseudovectors): j and .i ', de­
termining the direction of the meson spin before and 
after the charge exchange. In this case b'""' [jj'] 

3. Charge exchange of K-meson with spin 1 into 
K-meson with spin 0 without achange in parity. In 
this case a= 0, b- j, -

4. Charge exchange of K-meson with spin 0 with 
a change in parity. In this case a= 0, his a vector 
(h '""k) and 

5. Charge exchange of K-mesons with spin 1 
with a change in parity. In this case b ~ k X [jj'), 

6. Charge exchange of K-meson with spin 1 into 
K-meson with spin 0 with a change in parity. In 
this case b ""'[jk], 

crp = cra + crb, crd = (cra + ~1 3 crb) P_ + 113 o·bF+. 

For x = 0: crd I crp = 2crb / 3(cra + cr1,). 


