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sphere, r 0 its radius and w the angular velocity of 
rotation. Lense and ThirringB have shown that the 
field of Eq. (3) results in an additional precession 
of the perihelion of the satellite(planet) by the angle 
(in angular seconds per century) 

(4) 

~ I'¥ al 8 ('r0)2 T 
= -w- = 15 a -r(1-e2) 1 /,. 

where T (in days) is the period of rotation of the 
central sphere producing the field. In Eq. (4) it is 
assumed, for simplicity, that the plane of the orbit 
coincides with the equator of the rotating sphere and 
that the rotation of both the satellite and the sphere 
take place in the same direction. In a general case 8 

a multiplicative factor (I -3 sin' (i/2)), appears in 
Eq. (4), where i is the angle between the equatorial 
plane and the plane of the orbit. The angle of ro­
tation of the nodes is smaller by a factor of 2 than 
the angle of Eq. (4) and has an opposite sign. To 
obtain the total effect it is only necessary to add 
algebraically the precession of the perihelion of Eq. 
(4) with the precession of Eq. (2). 

In the case of Mercury (a= 5.8 x 10 1 2, T = 88 
days,~"o=r0 =6,96.fOJo and -r=-r0= 28days) 
~ ~ 2.5 X 1 o-4 and qt r = 0.01 ". At the present time 
the ~curacy of measurement of the rcecession of the 
perihelion has reached the order of 1' '. For a nearby 
satellite of earth the picture is quite different. Forh=400 
km, T ;e.-l.54hours: ~~3 x 10- 2 and 'l'r ;E-43': 
per century. Thus the relativistic effect connected 
with the rotation of the earth is of the same magni­
tude as the total relativistic effect for Mercury. 
Thus it appears desirable to give attention to the 
possibility of a measurement of this relativistic 
' 'rotation effect". 
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IN the papers 1 •2, it is shown that the meaning 
of the relativistically invariant regularization 

removing the divergences in the current field theory 
consists in replacing the usual field equations by 
equations with higher order derivatives. However, 
bee ause of the known difficulties related to nega­
tive energies 3 , the problem of interpretation of the 
field theory with higher order derivatives is not 
solved. 

For sake of simplicity let us consider a neutral 
scalar field, subject to the equation: 

n 
(l) IT (0-xi)<D(x)=-e'p(.x), 

c=o 

where Xo < x1 < · · · xn, and p(x) is the density 
of the field sources. F quat ion ( l) is equivalent to 
the system of equations 

(0- x~) 1!>1 (x) =- e'Cip (x), i = 0, 1, 2, ... , n, (2) 

where the constants C. are 
L 

(3) 

and satisfy the Pauli-Villars regularization condi­
tions. In this case the solution of Eq. (l) has the 

•form 

<D (x) = L: <Di (x). 
(4) 

i=O 

In the absence of sources, the solution of (2) can 
he written in the form of a Fourier expansion: 

(5) 

where wi = (k 2 +x;) 1 12• The expression for the 
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entire energy of a free field takes the form: 

The canonical quantization gives the following 
- + 

reJations for the operators ai, ai · 

(7) 

It follows from Eq. (6) that to the ''usual" fields 
there correspond even i's, and to the "unusual" 
fields, odd i's. From Eq. (7) it follows that, for 
usual fields, the particle number operator is N. 
=a.+ a., and, for unusual fields, it is N. =a; a~+ 

t t t • l 
F:xpression (6) takes then the form 

n n 

H = ~ H 1 = ~ 2_' 1iw1 (N1 + 1!2)(-1)1• (8) 

i=O i=O k 

An attempt to interpret this theory in the sense 
that it describes a system of fields with rest masses 

m1 = 1ix1;C , and coupling constants e i = e 'C i 
encounters some difficulties in what concerns nega­
tive energies of the free unusual field [as it can he 
seen frorrl"Eq. (8)1. To eliminate these difficulties 
and to conserve the advantages of the theory (con­
vergence), let us do the following: let us write the 
Heisenberg S- matrix corresponding to the interac­
tion of the considered field (described by equations 
with derivatives of order 2(2n + l) of the type (l) 
with the field of the sources, and let us average 
this S- matrix over the vacuum of the n unusual 
fields 

S=<~-.!:_'_ "" ( . ) 1 
.:...! tic r·! (9) 
r=o 

X ~.· .l dx1 . .. dx,P [H (x1), .•• H (x,)] > 
-oo vac. unusual Fields 

n 

H (x) =- e'p (x) cD (x) =- e' ~ ct>1 (x) p (x). (10) 
1=0 

The S-matrix (9) does not depend on the changes 
of the unusual fields: we take it as the funda­
mental law describing the interaction between the 
field of the sources and the (n + l) usual fields, 
characterized by rest-masses mi (i = 0, 2, . . . 2n) 
and by coupling constants e i wliich are expressed 
in terms of rest-masses of the usual and unusual 
fields. It is clear that, inversly, to any given sys­
tem of (n + 1) fields with identical spin, charac-

terized by rest-masses and coupling constants, we 
can associate a relativistically invariant, finite 
S-matrix (9); the unknown constants e 'and the 
rest-masses m/i odd) of unusual fields are deter­
mined in terms of rest masses mi (i = 0, 2, ... 2n) 

of the usual (real) fields, and of their constants 
e i of coupling with the sources, by the equation 

e'C1 = e1, i = 0, 2,4 ... , 2n. (ll) 

It is easy to see that the S-matrix (9) corre­
sponds to a quantum system of fields described 
with higher derivatives (1) in the Heisenberg rep­
resentation, and obeying a particular conserva-
tion law: for any real transition of the system the 
vacuum of the unusual fields has to he conserved. 
Quanta of the unusual fields may appear only in 
intermediate states. One has to point out, however, 
that this theory is not unique. The system of(n +l) 
fields can he described by equations with deriva­
tives of order either 2(2n + l) or 2(2n + 2)- which 
correspond to the existence of n or n + 1 unusual 
fields. 

A complete uniqueness of the f crmalism is ob­
tained by the restriction to equations containing 
derivatives of the lowest order. According to Eqs. 
(ll) and (3) this restriction corresponds to the 
physical requirement that no other experimental 
constants occur in the theory except the rest masses 
and the constants of coupling of these fields with 
the sources; this is the same requirement as in 
ordinary electrodynamics. However, in this case, 
the theory with a single field is not r-egularized. 
To regularize the S-matrix it is necessary and suf­
ficient that the sources interact with at least two 
fields of identical spins. 

If one removes the restriction of lowest order 
derivatives, the S-matrix is always regularized -
hut in addition to the rest ma:;ses and the coupling 
constants of the usual field, an additional arbi­
trary constant e'entersthe theory*. It can he de­
termined by comparing the theory with experimental 
data. 

The system of equations (ll) does not depend 
on the tensor dimensionality of the field operator 
¢(x). The theory can he thus applied to any sys­
tem of integral spin fields, for example to a system 
of mesons interacting with nucleons. 

*Equation (II) is then a system of n +I equations 
for (n + 2) unknowns. 
Translated by E. S. Troubetzkey 
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THIS letter is concerned with the determination 
of the frequency of oscillations of electron 

plasma placed in a constant and uniform electric 
field£ 0*. 

We shall denote by F(r, v, t) a distribution func­
tion of the plasma electrons. This function satis­
fies the kinetic equation 

(}F e dF 
-0 +vgradF+- (E 0 +E)-+J[F]=O 

t m ov ' 

where !(F) is the collision integral and E is the 
electric field specified by the plasma oscillations 
and satisfyin~ the relation 

divE= 47te ~ Fdv _ 47ten0 

where n 0 is the equilibrium density of the ions. 
The equilibrium distribution function F 0 of the 
electrons in the absence of oscillations has the 
form 2 

w 

fo(v 2 ) = c exp {- w + ~ r 1 + ~J'-ldw\, 
o L ~; I 

h (v2) = _ el dfo 
m av' 

wherew = mv2 /2T, ~ = (M!6m)(eE0l!T)2, m and Mare 
the masses of electrons and ions respectively, l 
is the mean free path of electrons and T the tem­
perature. If we assume that the distribution func­
tion F differs only slightly from F 0, we obtain the 
following equations for f = F- F 0 and the field 
E: 

iJf eEo iJf PE i!F0 1 
-:;-1 +vgradf+- ;;--- +- - + -!= 0 
u m uV m dv -r ' 

(1) 

divE=47te~fdv, 

where the ·term f/Tphenomenologicallytakes into 
account the presence of collisions t Tis the aver­
age time between collisions). 

We seek a solution for the set of equations (1) 
according to Landau 3 in the form 

/(r, v, t) = ~ ACv, t) eikr dk, fk (v, t) 

ioo+cr 

-- 27ti ~ JP (v) ePt dp, 
-ioo+cr 

E (r, t) =-grad q> =- i ~ kq>k (t) eikr dk, 

and we obtain 

ioo+a 

cpk (t) = _1_ \' 21ti .l 
-ioo+a 

(2) 

·v.t 'l'.r: Vx 

4~~~exp{-e~u ~ (p + ikv + ~ )d'ux}{ \ g (v) exp{:Co ~1 (p-t-ikv+ ~) dt•x} dz•.~}dv (3) 
n -oo (I 

cpp 

k2 -~:~exp{e::~\(p+ikv+~ )dvx}{ Y i<:o·exp[~o~((p+ikv+ ~ )dv_,Jdv.,}dv 
0 -oo 0 


