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with quantum numbers 1, 0, 0; l: m' and with momen­
tum k of the emerging electron (atomic units are 
used here). In the radial integral which enters into 
the matrix element, the important region is evidently 
r~. r 2 ~ 1 1 Z. In this region the wave function 
of the initial state coincides with the Coulomb 
function with accuracy to a normalization factor 
A 1. To find A l' we make use of the fact that the 
in1tl.al and Coulomb functions are quasi-classical 
for r >> 1/Z. If we write out the quantization rule 
and the normalization condition for them, we get, 
after some simple transformations, 

where B l is the normalization coefficient of the 
Coulombnfunction, E nl is the _en_ergy of the ~orre­
sponding level. In this case, It IS assumed m the 
calculations that for n = 1, 2, Anz = B nl' 

For large n 2 and for n 1 = 2, 

where A l l is almost independent of n 2 • There-
1 2 

fore, replacing the sum over n 2 , beginning with 
n 2 = 3, by an integral, we can write the total num­
ber of Auger-transitions per unit time in the form: 

1 2 00 

(1 I 't')~ = (1 I 't')L-L + ~ ~ Az,z, ~ (iJEn,Z, I iJn2) dn2 
1,=0 z,~o .n,=3 

1 co 

+ ~ A1,3 ~ (oEn,3 I on2 ) dn2 + ... 
1 1 

= (1 I -r)L-L- ~ ~ Az,z.Esz,- ~ Az,sE43- · · · · 
1,-=0 1,=0 1,-0 

where small terms of the type 

are discarded. 
In the first approximation, 

1 2 

(1 I -r)z: = (1 I -r)L-L- ~ ~ Az,I,Esz,. 
lt-t' i~-=0 

We can put E in the form:3 
3l2 

E3 z =- (Z- s1)2 I 18, where s l is the screening constant 
For (11-r)r-r·, making use of the well-known re­

sults ot reference 2, we obtain for Z = 4 7, after 
some computation, 

(1 I 't")z; = 45,9 atomic units ( 1) 

A quantity defined from experiment is the coef­
ficient 

OCK = Z 4 (1 I 't')., I (1 I'":) d 
~ ra , 

where (1/ 7) rad is the number of radiative transi­
tions per unit time. For Z = 4 7: (1 / r) rad' = 0.197 
atomic units. 4 ~laking use of Eq. (1 ), we obtain 

oc K = 1.14 X 10. 6 The experimental value is 4 

ocK =1.14 x 10. 6 Calculation with the help of the 
Coulomb functions gives ocK =1.65-106 • 
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T HE scattering of fast neutrons by an opaque 
nonspherical nucleus with spin zero has been 

studied by Drozdov 1 • 2 • The scattering of fast 
neutrons by an even-even semitransparent non­
spherical nucleus -is considered in the present 
work. 

According to Uohr and Mottelson3 •4 , the even­
even nudei in their rotational states have the form 
of an ellipsoid of revolution and the wave function 
of such a state is a spherical harmonic Y lm(w)*, 

where l, m are the spin of the nucleus and the pro­
jection of that spin, w represents the angles iJ, 

cpwh ich characterize the direction of the axes of 
symmetry of the ellipsoid. The rotational levels 
are determined by the formula I:'. I = (h~ I 2,) I (I + 1 ), 
I= 0, :!, 4, ... ,where I is the effective moment of 
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inertia of the nucleus. If we introduce the eccen­
tricity of the nucleus f = l- (a/6) 2 (b is the radius 
of the largest circular cross section of the ellip­
soid), then I= l/4I0 f 2 , where I 0 is the ordinary 
moment of inertia of a spherical nucleus of equal 
volume. For most nuclei, [€[ "'0.2-0.3. For fast 
neutrons, we can use the adiabatic approximation 
and consider the scattering of the neutron on a 
fixed nucleus. \\' e can then write the wave function 
of the system in the forn, 'Y (r, w) z uk (r, w) 

x'Yz, (w),where uk is the wave function of the 
neutr~n' scattered by a fixed nucleus whose orien­
tation is given by the angles w. In what follows 
we shall consider that the nucleus is in the ground 
state before scattering, i.e., 10 = 0. 

To calculate the amplitude of the scattering, we 
make use of the formula of Francis and Watson5: 

ILU \ r· (k k') f(O., w) =- 2rrlt' j exp ct - X ( 2) 

+ i (n-1) kD (x)} dx, 

Here k, k' are the propagation vectors of the inci­
dent and scattered neutron, respectively, n repre­
sents the angles which define the direction of k '; 
D(x) is the distance traversed by the incident neu­
tron (in the nucleus) which is found at the point x; 
integration is carried out over the volume of the 
ellipsoid, whose orientation is defined by the angles 
w; the complex potential U is connected with the 
complex index of refraction n by the relation 
U =- (h"k2 1 2tL) (n" -1) . The region of applica­

bility of Eq. (2) is evidently limited by the condi­
tion [U[/ E << l, where E is the energy of the neu­
tron. The cross section for scattering in the direc­
tion n with excitation of the rotational level/, m 
is determined by the formula 

crlm(O.) = 4~ ~~dwY1m(w)/(w, O.)r. (3) 

The total cross section of all processes and the 
cross section of capture are given by the relations 

crt= k1 lm \ dwf (0, w) I , J 0=0 

1 " cr = -- \ dw dxe-D (x)(A 
c 4rrA .) ' 

where A= l/(2kimn), e is the scattering angle. If 
we take the direction. of the vector k as the axis of 
quantization, then the symmetry properties of Eq. 
(2) lead to the relations az (n) = 0 if l is odd, ,m 
az (n) = aJ. - m(n); az (n) = 0 fore= 0 if m.;, 0. 

'ifith the h'elp of a coo'rdinate transformation 
which transforms the ellipsoid into a sphere, with 

a change to a cylindrical system of coordinates, the 
integral (2) becomes 

/(0, w)= ab~k2 ~ 
q 

1 

(4) 

X ~ ! 0 (px) sin (q V1-p2) exp {ip Vi_:_ p!} pdp, 
0 

where 

x =2kbsin ~ [1-ecos2 r-(asin ~ j hqB->lJ'~. 
n -1 

p:= ka ~(B-) , 

y is the angle between the vector k '- k and the 
axis of symmetry of the ellipsoid. With the use of 
Eqs. (3) and (4), it can be shown that the excitation 
cross section of the lth level is proportional to fl, 
.i.e., excitation is practicable only with l = 2. 

The integral (4) is computed for small angles 
kbe < l. For angles which satisfy the condition 
2kbsine/2 >> l for (4), we get the asymptotic ex­
pression 

(5) 

!( ,... . ""1-n2 [(q+p)exp(iVx"+(q-p)2) 

••, (<>) ::-.: ab·k· -;;q- x" + (q + p)2 

+ (q-p) exp (i V x2 + (q + pf] 
x" + (q- p)" . 

Calculation of the cross section (3) is carried out 
by means of a decomposition of the integral (4) 
(or its asymptotic expression) in a series in the 
small parameter f. 

If we start out in the calculation of the ampli­
tude of the scattering, not from Eq. (2), hut from 
the optical diffraction formula: 6 

f (0, u) = ~~ ~ [1- e2i(n-l)lls] ei(k-l<')xdfn' (6) 

s 
(here 2s is the penetration of the neutron in the nu­
cleus; integration is carried out over the area of the 
projection of the ellipsoid on a plane perpendicular 
to the vector k) then the following expression is 
obtained: 

f (Q, w) = ikb2~ (B-) (7) 
1 

~ [1- exp (2ip V 1-p')] lo (xo?) Pdp, 

0 
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where 

xo = kb sin 6 [cos2 cp + ~2 (.&) sin2 cp]'f,, 

cpis the azimuthal angle of the axis of symmetry, 
measured from the plane determined by the vectors 
k, k '. It is easy to see that Eq. (4) transforms into 
Eq. (7) for small angles of scattering e, with accu­
racy to (n + 1)/2"' 1. Evidently the optical ap­
proach of Eq. (6) is valid only for very small scat­
tering angles. 

In the Born approximation, which is valid for 
kR\UI/E « 1 (R is the radius of the nucleus), we 
can set n- 1 = 0 everywhere in Eq. (4) except 
in the multiplicative factor n 2 - 1. We then obtain 

/(0., w) = V2rrh-2 u.ab2Uy-'f•J (y) (8) 
• 3 /2 , 

where y = 2/ib sin (6/2) Vi-e cos" y. Here the 
dependence of the amplitude on the angles w is 
determined only by the angle y. Therefore, if we 
choose as the angle of quantization the direction 
of the vector k'- k only such states will be ex­
cited for W1ich the projection of the momentum is 
equal to zero. The cross section of excitation of 
the lth level can be calculated, not by Eq. (3), but 
by the simpler formula 

cr1 (0.) = (21 + 1) [} P1 (cosy) /(y, 0.) d cosy [
2 

(9) 

the cross sections of excitation of a level with mo­
mentum l and projection m in the direction of the 
vector k, are calculated with the help of the addi.: 
tion theorem for spherical functions. There also 
follow from Eq. (8) certain conclusions on the angu­
lar correlation between the scattered neutron and 
the photon produced in the transition l ~ 0. Thus, 
for example, for l = 2, the photon has an angular 
momentum equal to two and a projection of this mo­
mentum in the direction of the vector k' - k equal 
to zero; therefore, we get for the angular distribu­
tion of photons 7 : 

I (IX)= (15 I 8rr) (cos" IX- cos' IX), (1 0) 

where ex is the angle between the direction of the 
photon and the vector k'- k. 

Starting out with Eq. (8) and the expression for 
the total eros s section of elastic scattering and 
of the excitation of all rotational levels crs (0), 
=(4rt)- 1 fdwj/(w, 0.)1". one can show that the an­
gular distributions just obtained are the mean of the 

angular distributions, taken with a weighting factor 
for elastic scattering on spherical nuclei having 
radii from R 1 = a to R = b. 

2 

For small eccentricity (\E\ << 1) we get from Eqs. 
(8) and (9): 

(11) 

C1z (0.) = e/.AI I ( 2kb Sin ~ /-S)/2 J(l+a)/2 ( 2kb sin {) r ' 
A = 21+1 (21 + 1) rr / [Lab2[! (ll)2 /2 

l h"(l;2)!(2L+1)! • 

In conclusion, the author expresses his deep grati­
tude to I. M. Lifshitz, A. V. Pogorelov, L. N. Ro­
zentsveig, D. V. Volkov and A. G. Sitenko for their 
valued advice and criticism. 
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AT the present time it is possible to assert that 
experimental tests have brought about a con­

vine in~ verification of the general theory of rela­
tivity. However, an even further verification of 
the theory does not appear superfluous. Therefore 
it is appropriate at this time to point out the possi­
bility of an experimental verification of the general 
theory of relativity by utilizing artificial earth satel­
lites. 

The reception of the radio signals on earth from 
the satellite can be used to determine the gravita-

tional shift of frequency in the earth's field 2 The 
relativistic gravitational change of frequency. v is 


