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where V  cosgis the accelerating potential; € —
the mean value of the quanta emitted by the elec-

tron at the given energy E; @ — &, — the deviation
(fluctuation) of the number of quanta emitted per
unit time, from its mean value; the coefficient Q

is determined by the accommodation parameters

Q=2+4y— by + g/l nl, (6)

where l]/"F and ¥ _ are the averages of ¥/(6) over
focussing (n < 0)”and defocussing (z > 0) sectors.
The calculations show that ( ~4. Note that the
coefficient £ of d,,/a’t in (5) can be neglected in
that range of energy where radiation (and its fluc-
tuation) is important. Assuming a linear time de-

pendence, we can solve Eq. (5). For the mean
square of 5 , we find:
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where the factor ¥4 /QI7| isapproximately equal to
1/|n|. Equation (7) can be used to find the azi-
muthal dimensions of the electron concentration,
which are of some interest for evaluation of loss
by coherent radiation.

The largest radial deviation p_ _ of the instan-
taneous orbit is determined by (1), when y(6) is
given its maximum value l//m (0. Using (1), (2),

(5), and (7) we obtain the mean square value:

(8)
o2 = (55V3/96) (kR | me) (U2, / Q1 n ) (E  me2).

Note that exactly the same correction characterizes
the instantaneous orbit in a strong focussing beta-
tron, in which the radiation losses compensate on
the average. The evaluations show that, near the

center of steadiness (V' [n|v=¢t=/2) the factor

ax / QU7 P=10/[n|2 , while in the case of

weak focussing?? it is replaced by the expression
1/(1—n)(3—4n), which, for n ~\ 0.6-0.7 is
"2 10. The small dependence of G‘fnax onk ortis
explained by the influence of powerful extinction
linked to the large magnitude of the mean radiation
losses. This extinction has a simple physical meaning.
It can be shown that it corresponds to the fact that
when the orbit is displaced along the radius, the
particle radiates in such a way that the change of
its energy tends to restore the instantaneous orbit
in its equilibrium position.

If, for instance, we let H, ~10* oersteds,
then, according to Eq. (8), we get the evaluation
& <EsN/In|, which shows that
E=~5_:10BeV is only of the order

2
pmax
even for
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of a centimeter. The considered effect has thus,
by itself, no appreciable effect on acceleration.
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XCITED atoms, in which one of the interior

electrons (say a K-electron) is missing, undergo
transitions to a lower energy state by means of
radiation of a quantum or by a nonradiative transi-
tion with the emission of an electron (Auger Effect).
The total number of transitions per unit time (l/c)e
has been obtained for the nonrelativistic case for
arbitrary Z with the aid of the Coulomb function.!
Only in the case of the interaction of L-electrons
(for Z = 47) has the screening of the atomic nucleus
been taken into account.?

In first arder perturbation theory,

% - 2%, V (sdamy, nalsmy | 100, kL m)
— V' (nylomsy, nylym, [ 100, RUm') |2
and
% - 2: [V (nylymy, nslams | 100, RUm') |2

for the interaction of electrons with parallel and
antiparallel spins, respectively. Here we have

the matrix elements of the operator V = l/lr1 -r,,
which corresponds to a transition from a state witﬁ
quantum numbers ny, Iy, My; my, Iy m, to a state
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with quantum numbers 1, 0, 0; [, m” and with momen
tum % of the emerging electron (atomic units are
used here). In the radial integral which enters into

the matrix element, the important region is evidently
rn,rnsil/z In this region the wave function

of the initial state coincides with the Coulomb
function with accuracy to a normalization factor

4 i To find 4 e make use of the fact that the
initial and Coulomb functions are quasi-classical
for r>>1/Z. If we write out the quantization rule
and the normalization condition for them, we get,
after some simple transformations,

A, =B, V(n3/ 2?) (0E,;/ On),

where Bn is the normalization coefficient of the
Coulomb function, E  is the energy of the corre-
sponding level. In this case, it is assumed in the
calculations that forn=1,2,4,;= Bnl‘

FOI' large n2 and fOl' nl = 2,
1/7=4,,,0E,,, | on,,

where Al . is almost independent of n,. There-
1

fore, replacing the sum over n,, beginning with
n_ =3, by an integral, we can write the total num-
ber of Auger-transitions per unit time in the form:
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" where small terms of the type

[/ Ony) (OEn‘l1 /0n1) (n, > 2).

naly

Ay, O

are discarded.
In the first approximation,

(1 /T)E = (1 /T)L—L— Z \'“ A1112E3lz .

We can put £ in the form:3
3l2
E, =‘(Z"‘St)2/18'“’he"esl is the screening constant
For (1/7);_;-, making use of the well-known re-
sults ot reference 2, we obtain for Z = 47, after
some computation,
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(1/ 1)y =45,9 atomic units D)

A quantity defined from experiment is the coef-
ficient

GK = 74 (1/T)E /(] /T)rad

where (1/ 7) ;.4 is the number of radiative transi-
tions per unit time. For Z =47: (1/7) raq = 0.197
atomic units.* Making use of Eq. (1), we obtain
%x=1.14X10.® The experimental value is4
ag =1,14 x 10.° Calculation with the help of the
Coulomb functions gives ®x =1.65-10°%
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T HE scattering of fast neutrons by an opaque
nonspherical nucleus with spin zero has been
studied by Drozdov!:2, The scattering of fast
neutrons by an even-even semitransparent non-
spherical nucleus is considered in the present
work.

According to Bohr and l\/lottelsons’4, the even-
even nuclei in their rotational states have the form
of an ellipsoid of revolution and the wave function
of such a state is a spherical harmonic Ylm(m)*,
where [, m are the spin of the nucleus and the pro-
jection of that spin, w represents the angles ¥,
¢pwhich characterize the direction of the axes of
symmetry of the ellipsoid. The rotational levels
are determined by the formula £; = (A*/2)1( + 1),
1=0,2,4,... where [ is the effective moment of



