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The exrression obtained can be used for the con
version of the measured spectrum into the true ra
diation spectrum. 

Let us consider some special cases of Eqs. (2) 
and (3). 

l. The exciting radiation is weakly scattered 
and is attenuated according to the exponential law. 
x:rays approximately satisfy this condition. In this 
case L = R; R ""0 and formulae (2) and (3) are trans
formed respectively into 

(6) 
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2. The exciting radiation is weakly scattered 
and penetrates to a small depth (for instance, oc

particles). Therefore, L = k >> Lz; R ""0 and we 
obtain: 
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fl-~-:)CB .. L· 

~ l - - R/ e -" r· ' 
(8) 

I (l+Rzl(1-Rze-2Ll'•) 
l2= -:)CB - ----, 

J- Rf·,-~L l r, 

When x = oo 
0 

(9) 

i.e., with the increase of the size of the grain (d), 
the coefficient of reflection Rz decreases and, 
consequently, / 2 decreases. 

3. The exciting radiation is weakly scattered 
and weakly absorbed (gamma rays). In this case 
the layer is found to be uniformly excited for suf
ficiently great thicknesses, and, therefore, 

CkB I+Rl_[l--e-2Lz-'• 
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For an infinitely thick layer, / 1 = 0 and/"= 112CkB 
X (I- R1 l/f<l, i.e., with the increase of d, the 
coefficient of reflection decreases and / 2 in
creases. 

In such a way the different nature of the attenua
tion of the excitation flux leads to the re suit that 
an increase of the crushing of the powder of the 
luminophor increases the brightness of the lumines
cence in one case and decreases it in the second. 
Therefore we can imagine a case in which the 
brightness of the luminescence depends weakly 
on the degree of dispersion. 

* The formulas obtained are indeterminate if the light 
of the luminescence is not absorbed. In this case it is 
necessary during the calculation to use the formulas 

t (x) = 1/(1 + s lx) and r (x) = szx!(l -t- s lx) (see 

refa-ence 3). As a result, expressions are obtained 
which coincide with the formulas for the intensity of 
luminescence, given in reference I. 
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I IN the thermodynamic investigation of the 
•properties of materials which possess magnetic 

and dielectric properties that obey the general law 
set forth, for example, in reference I, it is possible 
to obtain thermodynamic inequalities which are the 
necessary conditions for thermodynamic equilib
rium . The present communication is devoted to a 
brief derivation of such inequalities, and to the ob
tainin,g, with the help of the latter, of certain con
elusions as to the form of the equilibrium curve of 
the magnetizati~n of a magnet. 
Ass~ming that each element of the volume of a 

body is in a state of thermodynamic equilibrium, we 
can represent the first law of thermodynamics, for 
media of interest to us, in the following form 

t,e = Tt,s + (HfiB + IMD)/4n;. (l. I) 
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Following Landau and Lifshitz 1, it is easy to cal
culate the minimum work done on a body, located 
in some medium, by external, thermally isolated 
bodies. In such a case, the energy of the closed 
system (body + surroundings), when the body is 
not in equilibrium with the medium, differs from 
its own maximum value by an amount 

~S =- Rm_!_J_l_ =- ~[b..E- T0A'>- _!__ 
P T 0 1 0 4;; 

(1. 2) 

X~ dV (HnB + E-AD)] , 

where 6.£, etc., represent the differences between 
the equilibrium values of the appropriate quanti
ties and their values in the state of total equilib
rium." It follows from Eq. (1.2) that forth~ ele
ment of volume of a body found in thermodynamic 
equilibrium with the remaining parts of the body 
(which can be considered as the medium) the fol
lowing condition must hold 

:le- Tb..s- (thiB + Etb..D)/47t > 0. 
(1. 3') 

For simplicity, we assume below that 6.D = 0, 
and limit ourselves to taking only the magnetic 
field into account. It is evident that for an elec
tric field, entirely analogous results will follow, 
Fxpanding 6.e in a power series in /',.s and /',.B, we 
get from Eq. (1.3): 

02e iJ2e 
ils"(A.s)2+ ~ iJB.iJB. b..Bib..Bi>O. (1.4) 

i ,j I 1 

The condition of the positive nature of the principal 
minors of the qualratic form (1.4) gives the corre
spondingthermodynamic inequality. In this case 
in particular, we !¥t ' 

( 1.5) 

We have neglected any change in the number 
of particles per unit volume. Account of such 
changes leads to the result that in differentiation 
in (1.5) must be carried out at constant chemical 
potential*. 

The inequality ( 1.5) is the analogue of the ther
modynamic ineqmlity (iJpjiJV)r<O and corresponds 
to the fact that, at constant temperature, an in
crease in the magnetic induction is always accom
panied by an increase in the magnetic field. Thus, 
in the state of thermodynamic equilibrium, the 
magnetization curve of a magnet has neither maxima 
nor minima. For a linear medium (B = [LH)it follows 
from Eq. (1.5) that f1 must be greater than zero. 
We note that for thermodynamic stability of the 
equilibrium state, it is also necessary that the 
coefficients of the expansion of 6.ein powers of /',.sand 
6.B i should be bounded, since in the opposite 

case , small changes in the parameters would lead 
to arbitrarilly large changes in the state. Then, 
from the condition of the finiteness of:(aH.jaB.)T 

! ! 

and from the condition (1.5), it follows that as ' 
H-+ 0, the magnetic induction tends toward the 
value B (H = 0), as the first power of H. 

Finally, we note that it follows from the condi
tion (1.5) that for an isotropic magnet, the mag
netic field, equal in this case to H=(4r=B/B) (iJe!iJB)s, 
and the induction must be parallel*. Actually, 
in this case the inequality (1.5) takes the following 
form 

( 1.1)) 

and for B z ""0 gives the result indicated. 

2. We now consider the somewhat more compli
cated. c~se ~f ~ system for whose phenomenological 
descnptwn It IS generally not possible to intr o
duce B or H. An example of such a system is a 
superconductor, considered from the point of view 
of the phenomenological theory of superconductiv
ity developed by Ginzburg and Landau 2• 

Let sueh a system be found in a constant and 
everywhere homogeneous magnetic field II 0 • In 
other words, H 0 represents the magnetic field 
which existed before the introduction of the body. 
The first law of th~rmodynamics for processes 
which are carried out in an electromagnetic field 
has the form 3 

AE=AQ-A.t 4: ~(ExH)df (2.1) 

Let the surface of integration extend to infinity; 
more accurately, we take the magnetic field on it 
to be equal to H0• Then we have 

- 6.t J(E X H 0) d f "" - 6.t .JH 0 'V X E dV 

"" 1/ c ./II 0 6.H dV 

and consequently, li:q. (2.1) can be written in the 
following form (/',.Q "" T 6.5) 

1 ~ 

AE = TAS + 41t ~ dV:lH.H0, (2.2) 

From this it follows that at constant temperature, 
and constant, everywhere homogeneous, magnetic 
field, the function has an extremum in the state 
of thermodynamic equilibrium. 

(JI (T, Ho) = E- TS- 417t ~HolfdV (2.3) 
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Actually, ~<I' = 0 under these conditions, in agree
ment with Eq. (2.2). The relations (2.2) and (2.3) 
were used by the author 4 in the investigation of 
the destruction of the superconducting ~tate in a 
mcgnetic field. 

We can raise the question as to the determination 
of the minimum work done by an external source on 
a body placed in a medium where the magnetic 
field is constant and homogeneous. It is not dif
ficult to find that 

Rmin = .l (E- ToS)- k ~ H0.1HdV. (2.4) 

Similar considerations permit us to obtain the 
following generalized form of (1.5): 

(iJH~;iJHi)r > o. (2.5) 

Here [ji = v-1 i HidV (Vis the volume enclosed 
by the surface on which the magnetic field is taken 
to he equal to H Q). Cone lusions can also he drawn 
from (2.5) as to the dependence of It on H 0, as 
was done above for the dependence of B on H. 

* Equation (1.2) permits us to determine the probabil
ity of thermodynamic fluctuations in the following 
manner: 

w ,..,_, exp {- 2!T [ .lT ~S'- 4
1
7!: ~ dV (.lH~B +.lEnD) n. 
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E ARLIF.R it was sho~n 1 that the expression 
for Z l' the atomic number of an element [an 

expression obtained on the basis of the rule of 
systematic filling (Aufbau principle) of the (n - l) 
groups 2], in the electronic shell of neutral unex
cited atoms of which the first electron appears 
with a given value for the orbital quantum number 
l, can he reduced to the form: 

z1 = 1h (2/ + 1)" + 1/6 (5-2/). (l) 

The second member of the right side of this 
equation represents a relatively small value and 
the dependence of Z 1 on l is determined princi
pally by the first member, which is proportional 
to (2l + 1) 3 ; this agrees well with the conclusions 
of statistic a theory. 3 One can also reduce to a 
similar form a series of other equations 4 obtained 
on the basis of that same rule, equations for the 
first appearance of atomic electrons with a given 
value for the principal quantum number, for the 
radial qumtum number and with a given value for 
the sum of the principal and orbital quantum num
bers. 

For the simplification of further exposition we 
shall introduce the following notation. Let 

H(y)=%ya+~; ~={- 1/6y, ifyis odd (2) 
+ 1/3 y, if y is even. 

From the condition l :::;_ n - 1 and from the inte
gral value of l it follows that the maximum value 
of the orbital quantum number (lm a) in the presence 
of the given value of n + l is equal to 0.5 (n + l 
- 1) if n + l is odd and equal to 0.5 (n + l- 2) if 
n +lis even. Therefore, the number of different 
quantum positions in the limits of one (n + l) 
group is equal to: 5 

l 
max (3) 

~ 2(2[ + 1) = 2(1 + 1) 2 
l = 0 max 

0 .5(n + l + I) 2 , if n + l is odd 

= b.5 (n + l) 2, if n + l is even 

From this it follows that the number of different 
quantum positions in the limits of an aggregae, 

including the (n + l) groups with all the values of 
n + lless than a certain odd rumher y = 2q + I 
(q = 0,1,2,3, .. ) is equal to 

0.5 (y- 1) 

~ (2q)" = lf,;y3 __ lfGy. 
(4) 

q={) 

For the aggregate itself, including the (n + L) 
groups with the values of n + L less than a cer-
tain even number y = 2q + 2, we have, consequently, 

0.5 (y- 2) 

q~ 0 (2q) 2 + 1/2y2 = l/6y3 + l/3y. 
(5) 

Ry such means, taking into consideration the 


