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As a further development of researches-4gp the quantum theory of the ¢ *luminous”’
electron, a formula has been obtained for the differential spectrum of radiation which is

uniformly valid for any Spectral ranﬁe for t
electron, E<<tg 1 /9=me (2Rmc/3h) /2

he comparitively small energies of the radiating

as well as for energies E E1/2and E>>E1/2

A closed formula for the total radiation energy (valid for arbitrary energies of the radia-
ting electron) and a formula for the ¢ critical’’ radiation frequency of the ‘*luminous”

electron have also been obtained.

1. INTRODUCTION

N works on the quantum theory of the **lumi-

nous’’ electron’ *®, a formula has been found for
the total radiation energy, taking into account the
first quantum correction. This formula is valid for

energy of the radiating electron E<E | g A simi-

lar result has been obtained more recently by
Schwinger.* A formula was obtained in reference 3
(see also reference 4) for the differential spectrum
at these energies. I\leplkov has obtained for-
mulas which characterize the angular distribution
of the radiation. These formulas are also correct
for energies EgJE1 /or Formulas for the differentia

spectrum were not obtained in this research. The
differential spectrum was calculated for a series

of energy values, with the aid of numerical integra-
tion.

In the present research a formula is found for the
differential spectrum of radiation of the ‘‘luminous’
electron which is uniformly valid for any spectral
range for arbitrary energies of the radiating electron.
A closed formula for the total radiation energy
(valid for arbitrary energies of the radiating elec-
tron) and a formula for the *critical’’ radiation
frequency of the ‘ ‘luminous® electron have also
been obtained . These formulas permit us to obtain
a number of new physical results.

2. ANGULAR DISTRIBUTION OF THE

1 RADIATION

The formula which characterizes the spectral
composition and angular distribution of the radiation
(see, for example, reference 3) can be written in
the following form:
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n is the principal quantum number, s the |
radial quantum number. The function Q(ZT" )(x)

is the associated Laguerre polynomial.

The expression for d)n’n 1.g,s! €AD be greatly

simplified by means of relations among the functions
I, ,'- Usingrecurrence relations among the
Ldguerre polynomials, we get the following rela-
tions among the [, ¢:

V;[n,n’—l = V’_lln—l, n'—1— V?[n,n';
V}[n—Ln’ = V’_iln,n’ - Vﬁln—l, n'—1-

By differentiation of the I ¢ (x) with respect to x
and use of the relations just written down, we can
show that

(2.2)

L e
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— —_ d > ,
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Further, taking into account the equality

Yo (KK'— ko) = 1 (n 4 n'— x), (2.4)

which arises from the conservation of energy
7 1 .
(K-K ' =x), the expression for (I)n,n 1.5, can be

reduced to the following form:

(2.5)
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Problems involving a change in trajectory, where
it is important to take radial quantum transitions
into account, were considered in reference 3. Since
we are presently interested only in the problem of
the intensity of the radiation, we can carry out the
summation over s ' with the aid of the relation

Z 12 1=1. If we further change to the dimension-
S0,

less variable £=x/2,/7~ we can write the expres-
sion for the total radiation energy as

(2.6)

(2.6a)
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whete the argument of the function/ ./ is
§2sin20, and the prime on the / indicates, the deriva-
tive with respect to this argument.

For further computation, in order to avoid the
complicated argument which results from integra-
tion with S-functions, it is appropriate to transform
the integral in Eq. (2.6a) to a surface integral by
means of the well-known formula

(..3@as= | ...ds/|ve)

P=0

2.7)

where do is an element of the surface ¢=0. We then
get, in place of Eq. (2.6a):

@, (§)
(09,,,/0n) (A —E)

(2.8)

W =L cerA | do,

™
Sm
Here Sm is the surface in the space of the dimen-

sionless quantity (5, determined by the equation
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¢ (é?)=0; do is an element of thissurface; n is
the outward drawn normal to this sur-

face. There is axial symmetry relative to the z
axis.

Each of the surfaces S, gives a spatial picture
of the distribution of the radiation frequencies for
the quantum transition n =n' (n-n'=m). The
wave number of the radiation in a particular direc-
tion, in the dimensionless units employed here, is
equal to the modulus of the radius vectordrawn in
this direction from the origin to the intersection
with the surface S It must be noted that, in the
transition to very high frequencies, radiation will
not be possible in all directions. The maximum
possible angle between the direction of radiation
of a given frequency and the plane of motion of the
electrons (in the classical sense) decreases all the
more strongly with increase in frequency. Such a
decrease in the angle of possible radiation is a
consequence of the law of conservation of energy--
momentum.

In the entire region of frequencies of interest to
us, the discrete spectrum is equivalent to the con-
tinuous, and we can therefore make the transition
from summation over m to the integral

n (2.9)
W = S W dm.

0

in forming the total energy of radiation. In this
transition, the family of surfaces S fills the en-
tire space, the boundary of which is defined by the
equation ¢ =0.

We take it into account that in the transition
from one surface to another, the identity ¢, =0 exists.
It follows from this identity that

9oy, (2.10)

dm_—: 2 (A - E) on dn’
m=2At —E&sin? 9,

where dn is the differential normal to the surface
¢,=0. Substituting (2.10) into (2.9), taking the

value omefrom (2.8) and considering that
dgdn:dgg is an element of volume in the dimension-
less space in which we are working, we finally ob-
tain

d%, (2.11)
24E—E23in%9

W =2 ce2A S o ¢
V,

where Vn is the volume bounded by the surface S,

For what follows, it is appropriate to change to
other units. In the units employed here, the wave
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number of the fundamental classical vibration

(the *‘fundamental’ in the sense of the classical
theory of the “‘ luminous”’ electron) is equal to
¢=1/24. As the new independent variable,

we se.lect the ratio of {to & | j.e., what in the
classical theory of the ““luminous’’ electron in the
discrete spectrum is known as the number of the
harmonic. Setting v~ =24¢ we obtain

;o cePr v - (2.12
V=S 0 (h) e )
I/IZ
where
vVi=y (1 .__Z"?lpzsng,)’
Vn o 2
|8 = A Vl - .82 = r'nEi ’

R=/"n/y is.the. classical radius of the trajectary. of.
the motion of the electron.

We further make use of approximations of the
function ln’n +(x), correct over the entire spec-
trum”’":

(2.13).

1
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and neglect terms of order /I-B2 in comparison
with the fundamental terms, we get the following
formula, which characterizes the angular distribu-
tion of the radiation:

e (2.14)
W = R 30
vy . e ERL T ?
XSmSln&d{}{vaK%(?’ 1—v/2n "% )COS ¥

Ledpe (L v )
‘ 4}K‘a(;%1_\,/2n““’/

.l A v .2 2 (1 v e
+ 2 (2}1) (1 _—.Z—J € [Kl/’ (?1—\:/271 %o >




108

where 39=l-[32sin2&, dsvzdusinﬁd&kpis the element
of volume in spherical coordinates. Integrationover
pcan easily be carried out in Eq. (2.14), since the
integrand does not depend on ¢.

3. DIFFERENTIAL SPECTRUM

In order to get the differential spectrum, we must
integrate F.q. (2.14) with respect to ¢. In this
integration, taking into account the exponential
fall off of the integrand as one departs from the
angle ¥=7/2, we can make the change of variable
cos 9=x and extend the limits of integration to infinity.

The integrals appearing in Eq. (2.14) are com-
puted by means of the theory of the Mellin trans-
formation. For example, for calculation of the
integral

(3.1)

on
o=\ ek, (s =1 =8 )
(V]

we must take into consideration the Nicholson in-
tegral

(3.2)

[o2]

K, (2)K,(z) =2 X K, (2zcht)ch (p + v) ¢ dt,

0

and also the value of the integrals

ri:’\’; (x) xv.—-t dx = 2;/-——21‘ (E'——%——V')T (!_L2ill> ’ 3.3)

\ / \

o X‘z;l—ln«x . I - X o 4
So(a+.x2)?@/ T 244 B(p, @), (@>0), (3.4)
| B g = 2B (g o P 4 ) (3.5)
Jch™ .y

0

(Reg>>|Rep|).

2
1/3

of Eq. (3.1) with the help of Eq. (3.2), and express-
ing the function K, (whicllll enters into the result of
this representation) by means of the equality fol-
lowing from Eq. (3.3) {by Mellin’s theorem] . This
lowers the order of integration and is possible be-
cause of the absolute convergence of the integrals
Finally, making use of Egs. (3.4) and (3.5), we get

i
el k-t

‘, == _0 -
1 8ri

R—ioo

We express the function K in the integrand

U_u2p.-—2'.51 (p‘) dP‘) (3‘6)
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where

v 1
)7_T_T

)

/

)

If we transform the expression for ¢ (1) by means of
the product formula for the gamma function,

1‘(2)I‘<zz+L>...F(z+"’—T1/ 3.7)

n
s

= (2r):n—Dptl—2 L (nz2),

- (3.8
[ == S Ks), (x) dX——KZ/;.(on)l'
PavE ey

The other integrals are calculated in a similar way.
A's aresult, we get the following formula for the
differential spectrum of the “‘ luminous”’ electron:

27
W = \ aw,, (3.9)
v
P N B '
v = ‘_—V—fﬁ--o’ V[ 3 Kﬁ/ (x)dx
é l—‘:/-zu (j/

Ff (=) (B = )]

\

This formula for the differential spectrum is appli-
cable for the entire spectrum, both for energies

E<<E1 /988 well as for E’\'E1 /2and E>>E1 /9° A

formula for the differential spectrum which is valid

for E<<E, /o Was obtained in reference 3:

— 3.10

AW =2 V3 ce?-< E ( )
T T R\ me?

>4y dy (g Iy, (x) dx
3
3 . h [N, |
- ﬂmﬂ*) K, (3’)},
y = (20/30,) (mc* | Ef, o, =c/R.
This formula can be obtained from Eq. (3.9) if we

limit ourselves to accuracy of first order in v/n.

We have
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©@ X v 2 _~3/2[< 2 ,,\3/:\ -
| Kulodes | K (dx —ggpa (30 )+
2 v 3/a _2. V;’/:
3 1—v/2n ;0/_ 30
Since calculation of the total energy of radiation.
. The form of the spectra for the values E=E
2 e £&<”1_0‘>3 (3.11) L
3 T3 we\ E : and E=10E1/2 is shown in Figs. 1 and 2, where the,
and —_——
121 = (h | Rmc) (me? | E), 3.12) ~

we can write Eq. (3.9) in the form of Eq. (3.10)
with accuracy to first order in v/n.

The functions which enter into Eq. (3.9) for the
differential spectrum have been studied in the
classical theory of the ‘‘luminous’’ electron.
Therefore this expression makes it possible to
study in full detail the entire spectrum of the
‘“luminous’” electron for arbitrary energies. In the
study of the spectrum it is expedient to take the
overall magnitude of the spectrum as unity. Then
Eq. (3.9) takes the following form in the independent
variable &=v/2n=hw/E(0<£<1):

(o]
2

dw = L2 (3 ”m&{
V3 \A )
&/(1—-8)¢

Ks  (x)dx 8.13)

[

b

N
et )

1,
J

where

U= (3h/2Rme) (E | mc?)? = (E | By ).

In the case of extreme ultrarelativistie energy
(£>1) we have, for almost the entire spectrum
(with the exception of the immediate vicinity of the
far limit of the spectrum({-1): ¢/ (1-¢) ¢ <1, so

that use can be made of the asymptotic formula

K, (x) =~ A AT ) v >0.

x <1 (3.14)

The asymptotic formula for the differential spectrum
has the following form:

JW ~ 3 r e) <@ s (3.15)

R T h oy
E s ‘ 2 £
X(EN" gzt (10— (1 4 )
(i) @0 =" (14 57
In what follows we verify the applicability of this
formula for the description of almost the entire
spectral range in the ultrarelativistic limit by the
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spectra given by classical theory for the same con-
ditions have been plotted for comparison.
Analysis of the spectra for all energies shows

that the criterion for the applicability of the classi-
cal theory of radiation of the ‘‘luminous’’ electron,
which was established in the previous researches,

=al (3.16)
has meaning only in relation to the calculation of
the total radiation energy in the classical theory.
So far as the applicability of the classical theory
to the analysis of differential spectrum, the cri-
terion mentioned tells us nothing. Relative to the
applicability of the classical theory to the analy-
sis of the differential spectrum, we must note that
tirst, the classical theory is in general not appli-
cable for the study of the far portions of the spec-
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trum, independent of whether the criterion (3.16) is
satisfied or not; second, the relative region of
applicability of the classical theory for the analy-
sis of the differential spectrum, i.e., the region of
applicability for fixed relative error, taken in rela-
tion to the total magnitude of the spectruni, does
not depend on the criterion (3.16) and is approxi-
mately constant. In particular, for example, if we
set ourselves the goal of comparing the results of
the quantum and classical theory relative to the
density of radiation in a certain frequency interval
(say in the visible light spectrum) , then the agree-
nent between the results of the classical and
quantum theory will improve considerably with
increase in energy.

It follows from the analysis of the spectra that
the dependence of the form of the spectrum on the
energy is weakened with increase of the energy of
the radiating electron. In the limiting ultrarelativ®
istic case, the form of the spectrum is practically
independent of the energy.

4. THE ‘‘CRITICAL” FREQUENCY

First of all, it is evident directly from Eq. {3.9) that
the number of the **critical”” harmonic v _( in the
continuous spectrum, this is the ratio of the ¢ * critical”
frequency to the frequency of the fundamental o =c/R)
at which the maximum energy radiation density is lo-
cated, can be formally defined, just as in the classical
theory, by the condition

2 Ve

€ 22— 1.

T l—vi2n 0 4.1)
If we take Kq. (3.12) into account, we arrive at the
following expression for the ‘‘critical’’ frequency:

©c=(3¢/2R) (E/me2pp(1 7)1, (4.9)

This coincides with what was obtained by
Klepikov® without developnent, on the basis of a

consideration only of the density of energy radia-
tion in the direction of the maximum angle of
radiation ¢ =n/2.

However, Eq. (4.2) is not sufficiently rigorous.
Actually, as is known, it is assumed in classical
theory that the ‘critical”” frequency wcCl is de-
fined by the following expression

c (4.3)
og! = (3¢ /2R) (E [ me).

As a direct construction of the classical spec-
trum of the radiation of the ¢‘luminous’’ electron
shows, the critical frequency actually amounts to
approximately one fourth this value. The quantum ~
formula (4.2) reduces to the classical formula
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(4.3) at comparitively small energies of the radia-
ting electron £<<1. The ‘‘critical”’ frequency is
virtually the same as in the classical case, being
about one fourth this value. Thus, in order to ob-
tain the ‘“ critical’’ frequency, it is necessary to
multiply the value obtained from Eq. (4.2) by the
factor g, which is approximately 1 /4 in the case
E<X El If the value of this factor did not de-
pend on” “the energy and was equal to the same
constant value 1/4 even at energies E~E, ,, and

E>E, /2 then E.q. (4.2) would have been rigorous, since
the limitation on the constant factor is not essential, as is
also the case in the classical theory. However, as
direct construction of the spectrum shows, this
factor is actually not a constant quantity, and
increases somewhat with increase in energy, ap-
proaching unity in the extreme relativistic case

¢ > 1. Therefore, the more rigorous formula for the
““critical”” frequency has the following form:

we = q (1) (3¢ /2R) (E [ me*)* (1 + O (4.4)

The function ¢ (¢) appearing in this formula can be
found by graphical methods. The results of such a
series of calculations are shown in Fig. 3.

g(¢)
7

i | R R SRS N W
72 ¢ 4 5 6 7 & § wg

Fic. 3. Graph of the function q({)

S. TOTAL ENERGY OF RADIATION

To obtain the total energy of radiation, it is
necessary to carry out integration in Eq. (3.9) over
v. Making the changé of integration variable

2 v

x:—“g"’/:
31 —v/2n70"

(5.1)

we can represent the total radiation energy in the
form

(5.2)

w2 @(li\'};(&); #(0) = 2 (O) + C42 (0),

= 3R me?)

where
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i V3 2Ky, (x) dx (5.2a)
\ (1+4+28x)* 7’
0
9V§ ¢ xaKle (x) dx
(1/2 (C) = lSTC S (1 _*_ :x),; .

We can express these integrals in the form of
hypergeometric series for the cases { >1 and {<1.
For {<1, the series are semi-convergent. For
¢>1, the series will converge. The latter series
defines an analytic function of { on all planes of
the complex variable {. However, the hypergeo-
metric series, as well as the closed formula for the
total radiation energy, are difficult to work with.
Thus,it is difficult, starting from the latter hypo-
geometric series, to obtain an asymptotic expansmn

of the total radiation ener%y for £ « 1. Therefore,
we calculate these integrals in such a form that that

formula which is obtained can be used in practice
as a closed formula for all values of ¢.

Writing the integral for ¢ (z) in the form
xKs, (x)dx (5.3)
14+ Zx

93 o
71 (C) == 167 OC.\
0

W3 o
~ T6m acQ ©),

we can, with the aid of the Mellin transformation
theory, represent the expansion for Q ({ )in the form
of an integral

) . (5.4)
Ftion =2
Q=——?'~o*:\ ik, Mzﬂ(z F")(2.) ds,
k2
Introducing the notation
O, (2) = i~ [),(z) — I, (2)] (5.5)
U (2)— 3 (2)],

where [, (2) is the Bessel function and/, (z) is an
Anger function, and closing the contour of integra-
tion in Eq. (5 4) at infinity on the left, we get

[‘1’513/ \+ J (5.6)
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The integral ¢, () can be computed similarly.
Carrymg out the calculation, we obtain the follow-
ing expression for ¢({):

5.7

2(0) = .Va {ad)s,w(f/i) 6.7
g

_e e P @Y YT

The functions on the right side of Eq. (5.7) are
well known. In the calculation of Eq. (5.2) this
expression gives a closed formula for the total
radiation energy.

For { >1, use can be made of series expansions
for the Bessel and Anger functions, keeping the
desired number of terms. The principal term for
the total radiation energy in this case has the form

32T (2/3) pp (Rme ’3< E "
27 3's RT “h mce* )

To find the asymptotic expression for the total
energy of radiation for { <1, we can use the well-

W/(O‘) (58)

known asymptotic expansion (see reference 6)

L (@)= J(2) —ﬂﬁqv V(2 — ) (5.9)
rz |z 2
v (22— v2) (42 — y?)
IR [
. Sin v 12yt (12— v3) (32— v?)
T Trz []_.. 22 + P —]‘
from which it follows that in this case
D, (2) = 2 cos L SVE[Y v —v) (5.10)
v D e p [7 —_ _;J—

v Slﬂ
+ 2isin—+= ‘m[

2 ]—

22
+w~mw—m_”}

24

Upon consideration of Eq. (5.10), it follows from
Eq. (5.7) that for {<<1 the asymptotic e xpression

6 G.I. Watson, Theory of Bessel Functions.
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 55VE | 64, (5.11)
— 1 ) o, .
W (- Y
. SSSSVE g3 89600, )
108 Tosr ot /]’

holds. This coincides with the asymptotic expan-
sion found in the direct calculation® of the total
radiation energy in the asymptotic sense.

It was pointed out above that in the extreme rela-
tivistic case, one can, for the study of almost the
whole spectrum, make use of the asymptotic
formula(3.15). With the help of this formula, we
can also compute the principal term of the total
radiation energy. The result coincides with Eq.
(5.8) . In comparison with the total radiation energy
given in the classical theory, a decrease of many
orders of magnitude is observed in the extreme
relativistic case . However, such a decrease comes
about chiefly from the fact that in this case,classi-
cal theory takes into account mainly the frequen-
cies which ought not to radiate. If, in the calcula-
tion of the total radiation energy by the formulas of
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classical theory, we restrict ourselves in the inte-
gration only to the region of frequencies which
actually radiate, w < E/h (it must be emphasized
that it is impossible to incorporate such a limita-
tion of the range of integration into the framework
of the classical theory), we then get the following
expression for the total energy:

()
W (5.12)

~ e ) p 3 4
=~ 3" (4m)™ (ce?/R?) 1" (2/,) (Rme | k) fa (2] mc'i)‘/“,

The constant 4 enters into the formula as a result
of the upper limit of integration.

In this case the classical theory describes al-
most the entire spectrum sufficiently well (with a
relative error not exceeding 10%).

}‘ranslated by R.T. Beyer
p !



