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On the basis of the modal representation of A. Bohr and B. Mottelson 1•2, the inelastic 
scattering of neutrons by the collective levels of the target nucleus are calculated for the 
case in which there is no compound nucleus formation. 

UNTIL recently, it has been assmped that reactions 
involving heavy nuclei (among which we include the 

inelastic scattering of neutrons) always pass 
through a compound nucleus phase. However, in the 
light of the recent researches of A. Bohr and B. 
Mottelson on a collective model of the nucleus1,2, 
another mechanism for inelastic scattering can be 
considered: the neutron, in passing close to the 
target nucleus, produces a'' tidal wave" in it, 

thus exciting surface vibrations (see reference 2, 
p. 158). 

1. CALCULATION OF THE !EFFECTIVE CROSS 
SECTION OF INELASTIC SCATTERING 

(GENERAL CASE) 

We begin with the Hamiltonian of the total 
system: target nucleus and passing particle: 

H tot (r, :x, x) (1) 

Here r represents the coordinates of the passing 
particle relative to the center of the target nucleus; 
"'and x are, respectively, the set of collective 
coordinates and the coordinates of the individual 
particles of the target nucleus. The operator Hn 
defines the internal motion of the nucleus, U (r, oc) 
is the energy of interaction between the scattered 
particle and the nucleus. Here we assume that the 
scattered particle .interacts only with the collec­
tive degrees of freedom of the target nucleus. We 
can assume, approximately, that the incident neu­
tron moves in an average field, changes in which 
are connected to the collective motions in the nu­
cleus. In view of the small compressibility of 
nuclear matter, this collective motion can be asso­
ciated only with the motion of the nuclear surface; 
for example, we can take as collective coordinates 
the expansion coefficients of the e11uation of the 
surfacP in spherical harmonics: 

• This work was completed in November, 1954. 
1 

A. Bohr, Dan Mat. Fys. Medd. 26, 14 (1952). 
2 A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd. 

27, 16 (1953). 

where R0 is the mean radius of the nucleus. 
For a spherical nucleus, the mean field whichacts 

on the nucleon is spherically symmetric: 

U(r, o:) = V(r) -f(r I Ro); (3) 

the equipotential surfaces, which include the sur­
face of the nucleus, are concentric spheres. In 

adiabatic deformations of the nuclear surface, all 
equipotential surfaces will be deformed similarly; 
the potential in this case wi 11 no longer be spher­
ically symmetric: 

U ( r, o:) "'-" f ( r I R ( & , :P)) =~ f ( ~), ( 4) 

where R (~ ,cp) is the expression for the deformed 
surface (2); ( =r/R. 

We expand t~e function (4) about the point 
( o=r!Ro: 

CD I 

!(" JC.\, '' 1 Jf!f(f.)l (t ")n ~) =' (<.ul -, 2J -, __ n_-_ <; -- 'o. · 
n=l n. a~ !;=;, 

From Eq. (3) we obtain 

o" f(~) I o;n k~,, = R~ il' v (r) I arn. 

Taking Eq. (2) into account, we have 

U(r, o:) = V(r) (5) 

co r "\.l(Y.) Y.,,.i&,'t') ~J,n '5' ( -- 111 r" J" V 1 r) I f-,, . ·~· " • 
+ ;;:1 --~~-,- ----;;;n I 1 +'2.;--c.,;--rx-A~-v-~.-,"-(&, '!') 

- \, p. 

In the study of processes involving excitation of 
the collective levels of the nuclei, we-Ii.rrlli our­
·selves to the first two terms of the expansion (5), 
thus assuming the deformations to be small. We 
have for the total Hamiltonian in this case: 

ff tot (r, o:, x) =- (h2 I 2M) v; (6) 

+ V(r) + ifn(o:, x) + W(r, o:), 

where the perturbation term is 
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lVJ( ) __ uV(r) ~ _ y ('' ") w r, 0': - r ar ~ O':l.!l /,:J ·v, -:' . (7) 
), ' [J 

In order to estimate the magnitude of the effec-
tive cross section of inelastic scattering, we make 
use of the general formula for the probability of 
transition between states of the continuous spec­
trum,under the action of a perturbation, which does 
not depend upon time: 

where v represents the set of quantum numbers k 
and n ( k is the propagation vector of the particle 
at infinity, n is the quantum number which char­
acterizes the discrete levels of the target nucleus), 
E ""E +Ek where E is the energy level of the v n ' n 

target nucleus and E k is the kinetic energy of the 
particle at infinity. 

'k / 
The matrix element lf~,v:;;W~k is determined by 

means of the zeroth approximation wave functions: 

Yn, k = fl, (r) 'fn (a:, x), (9) 

~here the % ( "'• x) are determined from the equa­
tiOn 

Hn(a:, X) "-fn (a:, x) = En'fn (a:, X), (1 O) 

and the functions F k (r) satisfy the equation 

-(II~ j :ZM) V'~ +- V (r)J F,, (r) = EkFk (rJ. (11) 

We write the matrix element wn 'k' in the form· 
nk • 

w:;t =~ ~h,-(r')'fn·(:Z, X) W(r',O':)'f,(O':,X)f'v.(r')(dr')(da:)(dx) 

= ~ Fx' (r') W,- 11 (r') F1, (r') (dr'). 

(12) 

where the matrix element Wn 'n is determined by 
means of the wave functions of the stationary state 
of the target nucleus: ( 1:3) 

Wu'n (r') = ~ 'fn' (a:, x) W (r', a:) 'fn (X, x) (do:) (dx) 

=- r' a~;~·) ~ <()(.A:J> Yt.v. (-&', -r'). 
1., ~· 

For the differential dv' in Eq. (8) we use the ele­
ment of volume in wave space: dk'xdk'ydk'z· In 

spherical coordinates, 

dv' = k' 2 dk' d!2 = 1/2 k' d (k' 2 ) dl..2. 
As wave functions for the incident and scattered 
neutrons we have the ' 'distorted" waves F k ( r) 

and F k...(r), where ~k is normalized to unit cur-

rent density and F k ,to the a-function in the space 
of the propagation vector: 

(14) 

x] i 1 V2/+T R,,z (r') Y1,, (}l', '-?'), 
l=O 

(15) 

00 I' 

l'==O m'=-·l' 

where t'} ,cpare the angles of scattering, Rkl are the 
radial wave functions. 

For such normalized functions F k and F k ,, the 

We have already carried out integration over k' 
in Eq. (16), which yields the value fork': 

k' "-~ [2M!t 2 (E~<- ~En•n)f1 ', 

Tbe effective cross section of inelastic scatter­
ing of an unpolarized beam of neutrons ds equal to 

d-:;AB = (2JA + 1) 1 ~~de.~'~., (17) 
MA Ms 

where M A and M B are the projections of the spin 

of the target nucleus in the ground and excited 
states. Carrying out a series of calculations, we 
get 

d-:;As=dfl~ B1 (k'.k)P1 (cosfl), 
l=o (18) 

where P 1 (cos tJ) are the Legendre polynomials, and 

the coefficients B 1 ( k ',k) are equal to 

B1(k', k) = fl(~l~ + 1 > (19) 

expressiondWvv' is the differential inelastic scat- X ~ (21.+ ll(R;;)-:! jQ~Ji 2 Al/. (k', k), 

tering cross section 
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L+J L+~ L' t-:\ 
(20) k' ,, 

A11- (k', k) = k LJ ~ ~ ~ (-)1-'-(2L +I) ('2L' +I) 
L=o L'c= i L-1 I 1--~ 'I L-/>. I 1'-= \ L'-1. I 

X (2/ + I) (2l' + I) (LL'OO I LL' 10) (ll'OO jll'JO) w (L L' ll'; }i.) 

x (L/OOjUAO)(L'l'WjL'l'AO) Re 1(-i/+ 1' iL'+Z Pn (k', k) P~~l'(k', k)]; 

(21) 
00 

PLI (k'' k) =o 2Mr~-2 \ R~'L (r) ov_ (r) Rr<L (r) r 3dr, .l or 
0 

W(LL 1l; ]A.) are the Racah coefficients 3 •4 ,(abOOj 
abcO) are the Klebsch-Gordan coefficients. 

In Eq. (13) we have replaced the matrix element 
W n 'n by the matrix element< "'Af:l> of the multi­
pole moment of transition according to the equation 
(see Appendix) 

(22) 

It can he seen from Eq. (18) that the total cross 
section of inelastic scattering is equal to 

crAB= 4..:80 (k', k), (23) 

with B 0 from Eq. (19), E q. (20) reduces to 
oo L+t-

Aot-(k', k) = ~ ~ ~ (2L +I) (24) 
L=o l=l L-t- 1 

X(2l+ I) (L/00 I L/W)2! PLI (k'' k) \ 2 • 

Knowing the quantities Q B A, which characterize 
the collective levels of the target nucleus, we can 
calculate the differential and total cross sections 
of the inelastic scattering of neutrons by Eqs. (l 8)­
(24). 

2. EXCITATION OF 1HE ROTATIONAL LEVELS 
OF EVEN-EVEN NUCLEI 

We now investigate the important case of the ex­
citation of the rotational levels in heavy even-even 
nuclei. It is known from experiments that the low­
est energy levels of even-even nuclei, far from 
closed shells, satisfy the relation: 

E1 =(h2 f2J)l(I+l), 1=0,2,4 ... , (25) 

3 
L. C. Biedenharn, J. M. Blast and M. E. Rose, Rev. 

Mod. Phys. 24, 249 (1952). 
4 K. Alder, Helv. Phys. Acta 25, 235 (1952). 

where ]=3B{3 is the effective moment of inertia, {3 
characterizes the total deformation of the nucleus, 
B is a parameter associated with the mass. 

In the energy region close to the ground state of 
the nucleus, the most important type of collective 
motion is the quadrupole vibration of the surface. 

In the adiabatic approximation of the Bohr-Mottel­
son theory, the wave function describing even-even 
nucleus in the lower energy states (25) has the 
form (26) 

121+1 !fin '= I I 8_2 '-?n~ny (~, "f) X.o Di,ro (8i), 
Jl C lw 

where the functions Dko (111, Cfl t/J) describe the nu­

clear rotatilon; 11,, Cfl tjJ are the Euler angles which 
fix the principal axes of the deformed nucleus rela­
tive to the fixed system of coordinates; I and M are 
the spin of the nucleus and its projection on the 
fixed axis z. 

We consilder transitions between states which are 
characterized by the quantum numbers I =0 and 

I N=I. We seek the quantity Q ~~= QY6 .A It can be 

shown (see Appendix) that 

!j:l 

Q(I) = f][ [ 10 (4k -1) (4k- 3) )'/, Q(2) (27) 
Io 3-'2.k(:!.ll-1)(4k+1) 2k,2k-2 

k--·1 

We have for the wave functions (26)2 

whence 

Q(2) _ [::\.;!/,> (2 1? -1)]''' Oo 
2k,2k-2 - 10 (4.k -- 1) 'l.Z' 

(28) 

(29) 

where Q 0 is the internal quadrupole moment of the 
~arget nucleus 2• The magnitude of Q0 character­
Izes the degree of deformation of the nuclear mater­
ial. 

Substituting Eq. (29) into Eq. (23), we obtain the 
total effective cross section of inelastic scattering 
of neutrons on the rotational level of the heavy 
even-even nucleus: 

I= 2, 4, 6, ... 
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= Lt-1 
A 0I(k',k)= ~ ~ h ('2L + l)(2l+ l)(L!OO! Ll/0)2 !Pn(k', k) ,~, (31) 

L=Ol-cc!L-l! 

k' 2 = 2Mh-2 (Ek- b£10 ), 6,£10 = EI- En, 

where E T is the energy of the rotational level (25). 
If we assume V (r) to be a potential well with 

sufficiently steep walls, we get from Eq. (21) (with 
a high degree of accuracy) 

PLZ (k', k) = 2Mn- 2 Rh (R0 ) Vo Rkz (Ro) R~. \32) 

where V 0 is the effective depth of the potential 
well, R 0 is the radius of the nucleus. ( For a 

s.quare well of depth V 0 , and radius R 0 , the-deriva­

t.v~ av (r)/ar=V 0 8(r-R 0 ); therefore Eq. (32) is sat-
fled exactly). 

The radial functions Rkz(r) can be written in the form 5 

Rkz (r) = e"51 (krt1 ohl (r). 

The functions G kl(r) have the asymptotic form: 

okl (r) ~sin (kr- 1/2 [7; + oz), 

where Oz=Oz(V(r), k) is the phase shift. We can now 

write 

I PLl (k', k) 12 (33) 

where x=kR 0 , x' =k' R 0 and x~ =2M'h 2 VoR~. 
Let us consider the square well. In this case the 

functions G (R 0 ) are represented by Bessel func­
tions of half integer order. Chief interest lies in the 
case of such values of L and x 0 for which the 
relation 

(34) 

is satisfied. This equation is the condition foc the 
existences, in the case of the square well, of a 

one particle level with energy E 1 =0 and angular 
.,ev 

momentum L. In this case, for x << 1, 

5 Mott and Massay, Theory of Atomic Collisions 

ok'L (Ro) = (-)1 (2 I nx')'f, u=--(L-'1,) (x') (35) 

+ Jz_,1, (x')}-'iz. 

It is seen from Eqs. (30), (31 ), (33) and (35) that 
for x '__, 0 (at the threshold of inelastic scattering) 

a 01 "' l/ x' -• w as a result of the terms in (31) witt 

L~.O and L=1 . 
F'or L=O or L=1, we get [ fron. Eq. (34)] cos x 0='J 

and sin x 0 ,0, i.e., 

Xo = 1/2nn (n = 1, 2, 3, ... ). (36) 

If we take as the depth of the well V 0 =28 mev, then, 

foc example foc n~, we get from Eq. (36) R 0,8.2 xlO-l:l 

em. Thus for nuclei with mass number A"" 180 (R 0 "" 

8.2 x 10- 13 em), the effect of excitation of the rota­
tional levels can be very pronounced (elements Ta, Vi, 
etc.). 

It can be assunJCd that, within the framework of the 

assumptions we have made, the general character of the 
behavior of the cross section of inelastic scattering 
ought not to depend essentially on the form of the 
potential well (foc given effective depth and radius). 

Calculations of the cross section of inelastic 
scattering on the first rotational level of W 1:: 

E lev =123 kev, !Q0 ! ""l8xl0-24cm2 *)give a 02, 10-24 to 

l0- 23 cm- 2 , in dependence on the depth V 0 of the 

square well and the energy E of the incident neu­
tron: 

* Such a value for Q 0 is obtained from the energy of 

the rotational levels of W186 • To use the value of Q 0 
obtained from electromagnetic data (spectroscopic 
measurements, half life measurements, Coulomb exci­
tation, etc) would be incorrect since the deformation 
of the nuclear material can be distinguished from defor­
mation of the charge. Measurements of the cross section 
of inelastic scattering of neutrons with excitation of 
rotational levels can appear to be new (i.e., besides 
the energy of the rotational levels) precise data on the 
degree of deformation of the nuclear material. 



102 D. F. ZARETSKII AND A. V. SHUT'KO 

Vo=20 mev 

E (mev) 0.200 
o-02 (barns) 0.39 

V0 =28 

E (mev) 0.150 
O"o2 (barns) 2.97 

It is evident from the table that in the case of 
one particle resonance the cross section of inelas­
tic scattering without the formation of an inter­
mediate nucleus can reach a considerable size. 
For comparison, the cross section of inelastic scat­
tering with excitation of the first level of W 187~ 
passing through an intermediate nucleus, has been 
calculated according to the theory of Hauser and 
Feshbach6 • For energies of the incident neutron 
of E= 0.2 mev, the cross section wa:3 equal to 0.6 
barn. Thus in some cases the two mechanisms 
of excitation of the lowest level of the target nu­
cleus can concur. The problem as to which of 
these mechanisms dominates can be solved only 
by experiment, on the basis of investigation of the 
path of the excitation curve of the first levels of 
the target nucleus in their dependence on the en­
ergy of the incident neutron. We note that, recent-
1 y, Guernsey and Goodman 7 • 8 observed inelastic 
scattering of neutrons with E= l.l mev on the first 
rotational level of Ta (E. =136.5 kev) which 

lev 
occurs, in their opinion, without formation of the . 
intermediate state. 

The authors consider it their duty to thank Prof­
essor A.S.Davydov for his valued advice and 
interest in the present work. 

APPENDIX 

1. CONNECTION BETWEEN DEFORMATIONS 
AND MUL TIPOLE MOMENTS 

l. We define the multipole moment of a system 
of nucleons as follows: 

A 

Q"~'- = ~ r; Y~~'- (&p, Cfp). 
(A.l) 

p=l 

If the number of particles is large, we can change 
to a continuous distribution of nucleons, i.e., 

0 W. Hauser and H. Feshbach, Phys. Rev. 87, 366 
(1952). 

7 J, B. Guernsey and C. Goodman, Bull. Am. Phys. 
Soc. 29, 48 (1954). 

8 J, B. Guernsey and C.Goodman, Phys. Rev. 95, 636 
0954). 

0.300 1.000 
0.59 0.68 

mev 

0.200 0.300 0.500 
11.42 11.02 8. 78 

(A.2) 

where p is the density of nucleons in the nucle:rs. 
Taking p to be constant, we have p=A/(47T/3)R 0 

and carrying out the integration over r in (A.2), we 
obtain 

Q"~'- = 47t/3R~~A.+3) ~Y*"v.(&,cp)R"+a(&,cp)dil. 
For small deformations, 

f?"A+a ~ Rot..+a [1 +(A+ 3) ] oc"~'- YAP·(&, cp)], 

"· fl. 

therefore 

(A.3) 

2. We have for the matrix elements of the opera­

tor "'Ap. 

(A.4) 

We make use of the well known expression:9 

(A.5) 

X Q~"l [(21.. + 1) I 47t] .,. 

Whence we obtain Eq. (22) 

9 K. A. Ter-Martirosian, J, Exper. Theoret, Phys. USSR 
22, 284 (1952). 
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2. RELATION BETWEEN MULTIPOLE MOMENTS 

OF TRANSITION OF VAIUOUS ORDERS 

I. For the spherical harmonics Y Ajl (,.o ,cp it is 

easy to obtain the relation 

4rt 
--------

[(21'+1)(2/ + 1)] 1
/ 2 

X~ (l'lm'mll'D.p.)Yz·m'(&,r.p) Yzm(&,r.p). 
rn,m' 

From this we get 

(l'lOO!l'D 0) (~)'1 ' (r" Y;u.,) 
' \2:A + 1 

= [(21' + 1) (21 + 1)]'/, 

X ~ (I' lm' mjl' D.p.) (r1' Yz:m') (rl Y;m ), 
m,m' 

In Eq. (A. 7) we can carry out the summation over 

rn rn' frf 

Now 

(f'! 00 \f' /). 0) Q ~l~I A 

(A.9) 

= (-)IA-1 ((2/ + J) (2[' + 1)]'/, 

where ). = l' + l. 

'""Q(!') Q (l) w (I B IJl; I A l'), 
.L. I si Jl A 
I 

where i. = !' + l. 

2. For the_matrix elements that are defined by 
means of the wave functions (26), we have 

(l'l 00 ll' n. 0) (4n I 21. + I r'' < r1• Y;,p.) (A.6) 

= ~ (!'lm'm ll' /'Ap.) ~ ~ < r 1' Yi'm') (r1 Y;m ), 
m,m' 1 M 

where the summation i~ carried out over the inter­
mediate states. Making use of (A.5) we get from 
(A.6) 

(A.7) 

the magnetic quantum numbers: 

(A.8) 

3. Making use of the relation 

\¥1 (/sUl; 0 l') 

we get 
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We set l '=2; then it follows that 

Q(i,) = [ 10 (2'A ~ 3) (2'A-1) ]'/2 
AO 3(2'A+1)('A-1)'A 

Q (2) Q(i\-2) () - C) 4 6 ) 
M-2 1.-2,0 ' - ~-, ' ' • ' 

Eq. (27) follows readily from Eq. (A.lO). 

Translated by R. T. Beyer 
18 

(A.lO) 


