
The ~ast intvgral is evaluated 3 by changing k 0 
mto Lk 0, and 1J as the va ue 

(Al3) 

The results we have obtained can he innnediately 
applied to the evaluation of the second-order con
tribution to 1 a-(p# q; l) in the case lr 2 1 » lq2 l, 
ll2 l >> m 2• For this we need only introduce va
riables u, v, defined by 

k = q (1- u) + lv + k1.. (Al4) 

It is clearly advantageous to decompose k11 into 
vectors whose squares are small. The variables 
u, v are defined in such a way that the main part of 

the logarithmic integral comes from small u and v. 
After some elementary algebra, we obtain the result 

e2 [ A A / p2/ ~" (p, q; l) = 4.,.P lr" lln 12 
(Al5) 

In this case no doubly-logarithmic terms appear. 

Translated by F. J. Dyson 
12 
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The infrared catastrophe is investigated by summing over diagrams. Expressions 
are obtained for G(p) when e 2hrlnm2{p2 -m2J:<, 1 and fori (p, q; l) when p ·q 
>> p2 - m2, q2 - m2 • The problem of r:o~diation of additional ~uanta during the scat
termg of an electron of arbitrary energy by an external field is considered. 

JT is well known that t.he calculation of matrix 

ele~en~s. o_f proce~ses m. quantum electrodynamics 
leads to mfmthes havmg V!rtous origins. Some of the in
finities, which appear as a result of the divergence 
of integrals for large energies of virtual quanta 
and pairs, originate, as has already been pointed 
out 1, from an incorrect description of the interac
tion by means of the 8-function. In addition to 
these infinities (which are considered in references 
1-4) there are also others, which result from integra-

1 L. D. Landau, A. A. Abrikosov and I. M. Khalatni
kov, Dokl. Akad. NaukSSSR95, 497 (1954), 

2 L. D. Landau, A. A. Abrikosov and I. M. Khalatni
kov, Dokl. Akad. NaukSSSR95, 773 (1954). 

3 • 
L. D. Landau, A. A. Abrikosov and I. M. Khalatni-

ko"t Dokl. Akad. NaukSSSR95, 1177 (1954) 
4 L. D. Landau, A. A. Ahrikosov and I. M. Khalatni

kov, Dokl. Akad.NaukSSSR96, 261 (1954), 

71 

tion over virtual quanta with k 2 close to zero, when
ever the diagram under consideration includes a 
free electron with p 2 = m 2• This situation always 
occurs for matrix elements of real processes and 
has been named the infrared catastrophe. It is re
lated to the fact that the very concept of a free 
line is a convention. 

Actually, as shown by many authors 51 everyfl"OC
e ss is accompanied by the radiation of a large 
number of low-energyquanta.. For this reason, a 
properly formulated problem must take account of 
the possibility of such radiation with frequencies 
up to some maximum <Urn ax' corresponding to the 
fact that areal experimental apparatus always 
has a limited sensitivity to small changes in the 
energy of particles taking part in the process. 

5 A. I. Akhiezer and V. B. Berestetskii, Quantum 
Electrodynamics GTTI (1953). 
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In practical calculations one usually uses the 
following device. One introduces a quantity ,\ . , 

h . h f mm w IC serves as a ictitious photon mass. Then 
when we integrate over the momentum of the vir
tual photon the divergent result is replaced by a 

value proportional to ln (m/AmiJ Next,one con
siders the same process, but replaces the virtual 
quantum by a real quantum (a process of the next 
higher order, in the preceeding approximation). It 
is not difficult to see that the cross section for 
the new process will be of the same order as the 
change in the first process which resulted from the 
introduction of the virtual quantum. We integrate 
over the momentum of the real quantum up to fre
quency wm ax' so that we again introduce the fic
titious ,\ . · When we combine the new cross sec-mm 
tion with the correction to the old cross section, 
the terms in ln ,\ . cancel. 

min 
Such a procedure is completely valid for low 

energy processes and for large limiting frequencies 
w • As we shall see later, the necessary con-max 
ditions for applicability of this procedure are: 

(e2/7t)ln (m/wmax) ~ 1 • for E :(;: m, 

(e2/rr) ln2 (E/m), 

(e2j1r) In (m/wmax) In (E/m) <!{;;:I for E.:?> m, 

where E is the order of magnitude of the energy 
of the process. When these conditions are violated, 
the procedure is invalid since, on the one hand, 
it becomes possible actually to radiate a large 
number of real quanta, and on the other hand vir
tual processes of arbitrary order begin to play an 
important role. The purpose of the present work 
is to investigate this question in general. In do
ing this, we shall here limit ourselves to consider
ing the scattering of an electron by an external 
field. However, in principle, the results obtained 
are also applicable to other processes. In addition 
to the infrared catastrophe and the question of the 
radiation of soft quanta, we shall also consider 
the radiation of hard quanta during high energy 
scattering. 

1. GREEN'S FUNCTION OF AN ELECTRON 
FOR p 2 "'m 2 

In reference 2 a calculation was made of the 
Green's function C(p) arid the vertex part 
r IL(p, q; l) in the appropriate region. However, 
it is not hard to see that this calculation of C(p) 
and r applied only for p 2 >> m 2• For the case 
where~ 2 is so close to m 2 that e 2/rrlnm2/(p2 _ m2) 

2. l, the calculation given in reference 2 is invalid. 
Since this 1:egion is directly related to the problem 
in which we are interested, we shall calculate 
C(p) and the corresponding r,_. for this case. 

The equations for r fL and C(p) are given in refer
ence l, Eq. (1.4). In solving them we can no 
longer (as was done in refere~ces 1,2) carry out a 
transition in the integrals to a four-dimensional 
Euclidean space by means of the substitution 
k 0 -> ik 0 , since the vector p is essentially time
like. But for just this reason we can achieve 
this by the substitution km -> -ikm (m = l, 2, 3). 

Let us consider the integral in the equation for 
C(p). The region of integration where k 2 >>m 2 

gives a result already known from reference 2, and 
is of no special interest when p 2 "'m 2• But now 
there is a new region which gives rise to a loga

rithmic integral. This is the region p 2 - m 2 

« (p- k)2- mz« mz. 
For the ease where p 2 ""m 2, we shall try to 

find a C(p) of the form 

where f3 was defined in reference 2, and v is an 
unknown slowly varying function. 

(l) 

As forl'a(p,p -l; /), we make use of the fact that 
the r always appears, in the cases which we 
need,f-Lwith the factor p + m preceeding and fol
lowing it (in the region of interest to us,l 2 << m 2 , 

so that p "'q), so we shall determine it up to terms 
which give a small contribution when bracketed 
in this way. 

We shall show that r u(p, p-l; l) should be of 
the form 

(p+m)ra(p,p-l,l)(p+m)= (2) 

(p + m)'ra (p + m) ~ (m2) f1 cp -~22_ m2)' 

where p. is a slowly varying function. In fact, 
looking at the integral in the equation for f' cr' we 
see that the region of integration k 2 >> m together 
with the term y cr in the equation gives us the 
known result Yua..(m 2). In this way all the terms 
in the equation can be absorbed into a..(m 2). Rut 
a logarithmic integral is obtained not only from 
this region but also from the region q2 - m 2 

< < (p - li) 2 - m 2 « m2• Here we ~an neglect k com
pared tom and, since k 2 << m2, we can replace 
dz and dt by d[ and d~ = l. 

From the spinor factors appearing in the numera
toc of the integral we easily obtain 
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(p + m) 1 P (p - k + m) (3) 

X 'la(p-[_:kA+m)rv(p+m) 

The form of the spinor agrees with that assumed 
in (2). Furthermore it is easy to see that, except foc the 
the rapidly varying part D , the integrand depeitds onl~ 
on the projection ofk aloJg' the direction of/p ( (p - k) · 
- m 2 ""- '2k · p ). Because of this we can integrate 
over the other components of k. 

Going over to a Euclidean space we obtain, as in 
reference 2, the relation (in our case d4k = (277)- 2 

dk 0 dk 1 dk 2 dk 3 ), 

(4) 

where the vector K is perpendicular to k . 
Resolving the k which appears in D vp along 

kpand K, integrating over K and makitg a change 
of variables, we obtain for fl(TJ) the equation 

1) 

t-t (·'l) = 1 - ~: (3d~- d~) ~ t-t3 (z) '12 (z) dz, (5) 
0 

where TJ = ln (m 2/ [(p - l) 2 - m2 ]). In integrating 
over K we considered only those terms which give 
a logarithmic integral with respect to k • In ad-
d. . . d h h . h . p f 2 thon we assume t at c angmg t e stgn o q -
m 2 in f1 has no essential effect on its magnitude 
(as will be evident from the result). Equation (5) 
confirms the correctness of the form assumed for 
ra-in Eq. (2). 

We now look at the integral in the equation for 
C(p) 1 •4 in the interesting ~egion where p 2 - m 2 

<< (p- k) 2 - m2 << m 2• It is not hard to show that 
the integral in this region is of order J k- 3d4 k so 
that, as in reference 2, we must include contri
butions to G(p - k) and to r IL in the integral of 

order (p 2 - m2)/[(p- k) 2 - m 2 J. The correction to 
C(p) is obtained simply by expanding the denomi
nator of formula (l) for C(p - k). The correction to 
r IL is gotten from the equation for r p! given in 

reference l, Eq. (l). In the present case the impor
tant range in the integral in the equation for r is 
p2 _ m2 « (p _ k)2 _ m2 « (p _ l)2 _ m2. fn 
this region the integral is of order (k- 3 dk, and 
therefore, as is easily seen, the main terms are 
those of order (p 2 - m2)/[(p- k) 2 - m 2 ] in the 
first C(p - k) and the first r)p, p - k; k). The 

corrections to the other terms in r and G are unim
portant. 

The correction to riL should be of the form 

Cv+m)'f' (p,p-l;l)(p+m) (6) 

= ()( (m2) (p + m) r fl. (p + m) 

P2-m2 x - a [p2 - m2 (p -/)2- m2] 
(p -1)2 - m2 ' • 

Substituting in 'the equation for riL, we get an 
equation for o: 

o (E, "'l) =- ~:(3d~- d~) 'I ('lJ) t-t2 ('tl) 

!; 

(7) 

x ~ [- t-t (z) +a (E, z)] v (z) dz. 
"II 

Now substituting the corrections to G and r in 
the equation for .G and using previous result~ 2 •4, 
we obtain an equation for v: 

v :~) = 1 + ~3d~- d~) 
(8) 

I! 

X ~ [- }1 (z) +a(~, z)] v(.z)dz. 
0 

Equations (5), (7), (8), enable us to determine 
f1 and v. However there is no need to solve them 
directly. Actually, according to Ward's theorem 6, 

the relation: 

(9) 

must hold. But then Eq. (5) gives us the function 
f1(TJ) in the form: 

}1 ('lJ) = exp [-(e2j27t) (3ct/- d~) 'YJ}. (10) 

The solution of equation (7) also presents no 
difficulties, and leads to the following form for 
0(~, Tf): 

Substituting this in equation (8), which can be 
written in the form 1/v(.;l = l- o (.f. 0), we get 

6 ]. Ward, Phys. Rev. 78, 182 (1950). 
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v (~) = exp [(e2/21t) (3d~- d1) ~]. (12) 

This formula satisfies (9), as required.* 

2 
2. THEVERTEXPARTWHENp.q»p -m2 , 

q2 _ m2. 

In the Jieceding section we have already calculated 
one of the vertex pa-ts d the type of interest to us 
here, namely r (p,q;l) for p 2 ""m 2, q2 ""m 2 , z2 
<< m 2 • The other type of vertex --•rJL(p,q;l) for l 2 

>> p2, q2, p2 >> m2, q2 >> m2, was found in a 
paper by Sudakov.7 Here •we consider the general 
case, making no restrictions on the vectors other 
than p · q >> p 2 - m2, q2 - m 2• As before, we 
shall sum only over the principal terms, i.e., those 
containing the maximum logarithmic terms in e 2 • 

In particular, we shall not include terms of order 
e 2ln ( t 2 I m2 ). For convenience of presentocion, 
we shall use the symbols p 2 - m2 = 2m~m 1 and 
q2 _ m':L= 2m1'1m2, . . 

In the integrals representmg the successrve 
approximations to the vertex part, there are parts 
which include an integration over momenta of 
virtual quanta greater than the norms of the real 
moment~ (in ou~ case l 2 and m2) which appear in 
the vertex part. If we separate this part in each of 
the integrals, it is not hard to see that together 
with the free term, the part containing only inte
grals over this region gives yf.i. r:4l 2) (just as in 
reference 2). In each of the remaining integrals, 
it turns out that the integration over k >> l (or m) 
must, if we neglect small terms, be carried out 
along a line lying closer to the principal vertex 
than that for the integrals with k « l (or m). All 
this leads to the result that in the successive 
approximations for r ' we can integrate only over 
k << l (or m), and take account of the integrals 
over the other region by a factor CJ.(l) 2 common to 
all terms, which determines the dependence of the 
integral on the "cutoff" limit. The dependence 
on l 2 given by this factor is unimportant in our 
case since, as we shall see later, there are teqns 

in r of order [ e 2 ln 2 (l 2 1m 2) ]n' which are much 
gre !ter than the terms arising from r:4l 2) which are 

* The product{L ('1)) V (1J) does not depend on p 2 - m2 , 
so that at first glance it seems that the infrared catas
trophe does not occur, Actually, the scattering matrix 
element captains terms in the exponent of order e2 i2 
X m" 1t m2 

In -2--., h d · · b d h p - m· w ose etermmat10n goes eyon t e accu-
racy of this section. (cf. later sections). 

7 V. V. Sudakov, J. Ex per. Theoret. Phys. USSR 30, 
87, (l956).Soviet Phys. JETP 3, 65 (1956). 

n 
of order [ e 2 ln (l 21m2)]. Because of this, we can 
always take r:4l 2 ) "" CJ.(m 2). In calculating the in
tegrals for k << l, we use a method similar to that 
developed in the paper of Sudakov 7• The principal 
part of the integral is gotten by resolving k along 
p, q, and in the plane perpendicular to these vec
tors. In integrating over the last component we 
must take the residue for k 2 = 0. Thus the addi
tional vertex parts from the virtual quanta will be 
of the type considered in the preceding section, and 
.each factor r:4m 2) p. from sue h a vertex will cancel 
against the factor f3(m':l.) v from the factor G which 
is placed next to this r on the side toward the 
fundamental vertex. So, in calculating the vertex 
parts which we need, we can use the zeroth order 
result from neighboring r•s and G's. 

To make clear what the region of integration is, we 

shall first consider r f.i. in first approximation. We 

begin with the part containing dtk- 2 op.v· It has 
the the well-known form 

e2 r y!l-(p-k+m)y"(q-k+m)y!l-df('?2 )d'k (13) 
7t[ J [(p- k)2- m3] [(q- k)2- m~] k2 

We introduce variables u,v,x: 

k = ( a2u - av) ( a2v - au ) 
p a 2 -1 + q a"-1 +k.J.., (14) 

x =- k3_, a= (pq)jmz. 

In terms of these variables, the volume element 
in k-space is 

d4k = (m2f41t) az (az -1)-' 12 dxdudv. (IS) 

Expressed in terms of these variables, the impor
tant expressions which appear in the denominators 
are equal to 

(16) 

k2 = m2a2 (a2 - I rl (2auv- u2 - v 2)- X, 

(p- k)2- m2 = 2mfl.m1 - 2 (pq) v + k2 , 

(q- k)2 - m2 = 2mfl.m2 - 2 (pq) u + k 2 • 

Since xis positive (integration region 0- oo), u 
and v must be chosen so that the point k 2 = 0 
corresponds to x > 0. This requires that 2auv 
- u 2 - v 2 > 0. We shall take a> 0, a 2-l > 0 . 
The contrary case is treated similarly, or even 
more simply by analytic continuation. Thus the 
integration must extend over the region between 
the two lines 

(17) 

U1 = v (a+ Va 2 - 1), 

Uz=V(a-Va2 -1) = vj(a +Va2 -1). 
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In addition it is clear from Eq. (16) that u and v 
are limited by the conditions 

tl.m1/a ~I vI~ I, (18) 

tl.m2/a ~I u I <!{;;I. 

The limit from above corresponds to the condition 
k << l. It is not ha-d to see that integration over 
positive and negative regions of u and v which 
satisfy our conditionsgivesthe same contribution, 
and can he replaced by twice the integral over 
u > 0, v > 0. In the numerator, hecaus~ of the 
smallness of u, v, and x, we can drop the k. When w: bracket r on the left and right with (p + m) and 
(>, +m) we get the expression 4 p·q(1 +m)yo- )( 
(q + m) in the numerator. 

We introduce the variables A= -ln v, 11 = -Inu. 
In terms of these variables, the region of integra
tion will have a form like that shown in Fig.1 

(the cross-hatched part). Of course, other rela
tions between Ina, In (m/ /:t;.m 1) and ln (m/ /:t;.m 2) are 

possible. The integral will be proportional to the 
are a cross-hatched in Fig. 1. 

.A 

ln~ r-~~~~r--, 

0 ln(a+YaZf) 

FIG. 1 

We shall not yet give the corresponding expres
sion, but will first consider the term in (dz - d) 
This term has the form t 

..::_ \ k (/- k~+ m)y0 (q- k + m) k~[d1 (k2)- dt (k2)] d 4k. 
rri J [(p- k)2- m"] [(q- k)"- m2] k4 

(19) 

If we introduce in this integral the same vari-
ables as in (13), then the conditions (l_B) 
still hold. Then ~e can once more neglect f com
pared with1 and q in the numerator, and upon mul
tiplying on the left and right by (p + m) and U/ + m) 
the numerator takes the form 4 p·kq·k (p + m) y o-{'q + m). 

Since the principal terms in square brackets of the expres• 
sion in the denominator give the product 4 p·kq·k , 

upon cancelling these factors in numerator and de

nominator, we get in place of (19) the much sim

pler integral ~ k-4d4k. 

If we express this integral in terms of u, v, and 
x, it turns out that once more the im JDrtant region 
in the integral is that in which k 2 = 0, but unlike 
what we had before, now both k 11 and x go to zero. 
As a result, the integral becomes proportional to 
to the sum of the integrals J u- 1du {or, what is the 
same thing Jv- 1 dv) taken along the two lines 
bounding the cross-hatched region of the type 
shown in Fig. 1. The particular form of the inte
gral depends on the relation between /:t;.m l' /:t;.m 2 , 

and a. 
Finally we obtain for the first approximation 

r 1-L(l) (p,q;l) the following formula: 

(.p + m) 1'~1 > (p, q; l)(q + m) 

= (p + m)lfl-(q + m)(- f), 

where the function fhas the form: 

for " "-,. O 
~1/ ' 

+ c (~1 + ~2) - 1/2 (~1- ~2)2] 

(20a) 

(20h) 

+ 1/2 (1- d7) (~1 + ~2)} 
for t. 0 ~1> ' ~1 + "'l>~z>~1 -'lj; 

j = (e2/2rc) (3/2"'12 + 2"1)~1 + 1/2~i) 

for-"'1<~1 <0, ~2>~1+"'1; 

(20c) 

f '-= (e2f21t) [7;! + "'l (~1 + ~2) + ~1~2 -- 1 /2~;1 (20d) 

(20e) 

for -"1)<~1<0, -"1)<~2<0, 
where ~1 = ln (mj tl.m1), ~2 = ln (m/ tl.m2), 

"'l =In a, C =In (a+ Va2 - 1). 
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In all these terms, except those of the type ~.; 
in (20a) and (20b), we have taken ~"" TJ, since 
taking account of their difference would go be
yond our accuracy. For the same reason, the 
equations (20c), (20d) and (20e) should be taken 
for a >>1, and terms with one .; or one TJ should 
be neglected. 

We shall now assume that we are considering 
the n'th approximation for r. In the correspond-
. d' f.L mg tagram, n arbitrarily intersecting virtual 
lines can occur. We consider first the numera
tor of any diagram of this type. Upon multiplying 
on the left by (p+ m) and on the right by Uj + m) it 
will have the form 

(p + m)'riJ. (p + m)Tv ... (p + m)ro(q + m) ... rdq + m)r1l (q + m) 

:::.::::: 22nPIJ.Pv ••• qf.q1l . .. (p + m) lo (q + m) . 

(21} 

.A 

Throughout all of this we have neglected k com-
pared top and if, and the quantities p 2 - m 2 and 
q2 - m 2 compared to pf.Lqv· From formula (21) it 
is clear that the numerators of all diagrams of the 
same order are equal to one another. Differences 
can occur only in the denominators. 

First we consider diagrams with a pair of lines. 
There can only be two such: one with parallel and 
one with intersecting lines. The integrand in 
both diagr!lll\s will be proportional to 

{(pkl) [(pkl) + (pk2)] [(qkl) + (qk2)] (qkl)}-1 

+ {(pkl) l(pkl) + (pk2)] [(qkl) + (qk2)] (qk2)}-1• 

The integral with maximum degree of logarithmic 
divergence is obtained from the first ter~ when 
P · k2 » P · kl' q. k 2 » q. k 1 and from the second if 

P · lc2 » p · k 1, q. k 1 » q. k~ The expressions from both 

terms are the same, and so the integrations over 

q· k 1 and q'k 2 are independent . If we now make 
the change of variables k 1 ~ k 2 , and take half 
the sum of the expression thus obtained and the 
old expression, it turns out that p,k 1 and p·k2 
are also independent. Since the regions of inte
gration are the same for both k' s, we get the 
simple result 

(22) 

= (p + m) lv- (q + m) (- /)2/2. 

Generalizing this to a diagram of n'th order, we 
have 

(.p+m)r~n>(q +m) (23) 

Summing all expressions of this type and noting, 
as pointed out at the beginning of this section, 

that the integrals over the momenta of virtual 
quanta in the region k >> l give a common factor 
o.(m 2), we find the following result; 

(p + m) r IJ. (p, q; l) (q + m) (24) 

This formula coincides with formula (10), if we 
take {from (20a) or (20b) and set a-+ l(TJ-+0). If, 
however, we take fin the form (20e) we arrive at 
the result obtained by Sudakov 7 • 

If we consider the process of scattering of an 
electron by an external field, then to get the ma
trix element we must multiply (24) by the expres
sion corresponding to a free line. It is well known 
that to eacr free line there corresponds I G(p) 
x (p _ m)! 12 , which in our case is equal to 

y ~ ( m2) ( Amm) (e'/4~t) (3- d~> 

Later we shall show that only the cases (20b), 
(20d) and (20e) have a direct physical interpre
tation. The results for these cases are: 

(25) 

(26a) 

+ ~ (~1 + ~2)- 1/2 (~1 - ~2)21- (~1 + ~z)} 
for ~1 > 0, ~2> 0, !;1 + '1J > ~2 > ~1- 'tj; 

/ 1 = (e2/2;r) ['1j2 + -~~1 + "l~2 + ~1~2 - 1/2 ~~] (26b) 

for-'1J<~1<0, 0<~2 <~1 +'1J; 

/r = (e2/2r-) ('YJ + cl) ('YJ + ~2) (26c) 

for -'tj <~1 <O, - '1J<~2 < 0. 

Generally speaking, when r is an internal ver
f.L 
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tex, the relation between l'lm 1 and l'lm 2 is arbi
trary. However, in this case we must consider 
lines which encompass several vertices, as we 
shall do for the case of one additional quantum. 

3. GENERALIZATION OF 1HE FEYNMAN DIA· 
GRAMS FOR OBTAINING PROBABILITIES 

OF MULTIPLE PROCESSES. 

B.efore we consider the question of the radiation 
of additional quanta during the scattering of an 
electron, we shall present a method which consi
derably simplifies the calculation of processes 
involving a large number of real particles. In this 
section we shall consider the emission of real 
pairs as well as real quanta . In the literature, the 
rules for calculating matrix elements with virtual 
quanta are presented very well (cf., for example, 
reference 5). However the situation with regard to 
the rules for finding transition probabilities is 
not so satisfactory. We shall give a simple scheme 
which enables one to find such probabilities with
out difficulty. 

First we consider processes in which the only 
real particles are photons. Aside from the appear
ance of their momenta in the propagation factors 
for virtual electrons, the presence of these pho
tons manifests itself as follows. For each initial 
photon, there is a factor 2rr~Kj in the probability, 
where K is the photon wave vector. For all except 
one of the final photons there is a factor (2-.:/ jKI) 

X ( 2-.:) -3 K 2d I K I dD in the probability. The momentum 
of the remaining photon is determined by the con
servation laws so that it gives only a factor 2rr/ jKj. 
In addition, each photon gives rise, in the appro
priate place in the matrix element, to the factor 
:-where£ is the polarization vector. The sum over 
polarizations is carried out by replacing 1'. · · t" 
in the expression for the probability by- 'Y!-L • • • y!-L 
(f-1- =o, 1, 2, 3). Finally there enters into tl:le ex
pression for the probability the quantity 2rro(E in. 
- E£. ) where E. and ££. are the total energies 

Ill. Ill. Ill, , , 
of the initial and final states. The a-functiOn IS 

eliminated by integrating over one of the djKj's. 
It is easy to see that the quantity 1/jKj can be 

written in the form 2 J dw o (k2), where k 2 = w 2 

w>o 

- K2 • If we integrate with respect to the momentum 
of the corresponding photon, this replacement results 
in a great similarity between real and virtual pho
tons. In fact, in place of S · .• li" ... "[ u. • •• o+ (k2 ) 

X d 4k (o+ (x) = ~ (x)- 1/i-.:x), which occurs for 
virtual photons, the expression 

2 ~ ... lfL ... lfL ... 0 (k2) d 4k 
w>O 

.:ppears in the formula for the probability for real 
photons. The requirement w > 0 is relativistic ally 
invariant, and in particular signifies that the pro
jection of the four-vector k on any time-like vector 
n with n0 > 0 is positive. We note that in place of 
the factor 1/jKj for the second photon, whose mo
mentum is determined by the conservation laws and 
o(E. - Ef. ), we can simply put 2o, .. > 0(k 2). 

Ill. Ill, ~ 

In doing this we still satisfy the energy conserva
tion law and retain the correct factor, since dE fin 
=dw. 

We now go over to the case when the only real 
particles are electrons, and there are no photons 
or pairs. In this case each electron in the initial 
state contributes the expression (1/2£) (u . .. u) 
to the probability, if we use the normalization uu 
=2m. Each of the electrons in the final state, ex
cept one whose momentum is determined by the 
conservation laws, gives the factor (2£rl (u . .. u) 
X (27tf3 p2 d JpJ dQ, where E is the energy of the 
electron. The last of the final state electrons gives simply 
(2E)- 1 (,u· . . u). If we carry out the sum over elec
tron spins, we replace U:u-> ~ + m. In addition 
there is a factor 2rrB(E. - Ef. ) in the probability. 

In. 1n. k h 
Just as in the case of photons, we can rna e t e 

replacement 

~ = 2 \ o (p2 - m2 ) dE. 
E>o 

If we are dealing with an electron for which we 
integrate over the momentum and sum over the spin, 
then we arrive at the result that each such electron 

gives a factor 

p !rtrn \ 0 (p2 _ m2) d4p. 
E>a 

,As for the last of the final state electrons, after 
summin~ over its spin we can write for it (~ + m) 
oE > 0(p - m2), which also includes o(Ein.- E fin). 

The similarity to virtual processes still does not 
appear explicitly in this form. In order to see the 
similarity, let us consider, for example, electron
electron scattering in zeroth approximation. From 
the conservation laws, it is clear that d4 p = d4 q, 
where q is the momentum of the virtual quantum 
which the electrons exchange with one another. If 
we make this substitution, then the expression for 
the probability suggests the matrix element for the 
interaction of a pair of electrons w:ith exchange of 
a pair of identical virtual photons. A similar situa
tion will occur in the more general cas e. 

Now we consider the case when pairs are pro
duced in a process. Since the momentum of one 
of the components of the pair is determined by the 
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conservation laws if the momentum of the pair-pro
ducing photon is given, the integration need be 
taken over only one of the components, say the 
electron, and over the momentum of the photon pro
ducing the e'lir. Jn the integrand the factor ('?J +m) 
o E > 0 (p2 - m2 ) refers to the electron, and the 

p 

factor Cp _ k + m) 'OEp-k >o ((p- k)2- m2 ) tothe 

positron. The generalization to the case where 
real quanta, electrons, and pairs are present, pre
~:ents no difficulty. 

The rules we have given can be presented in the 
form of generalized Feynman di~ams. In fact we 
shall draw a diagram which shows a sort of doubled 
diagram fa- the matrix element of our rrocess--
a diagram together with its mirror image (the latter 
corresponds to the Hermitian adjoint matrix ele
ment). We now join those photon and electron lines 
for which there is a summation over spin and inte
gration over momentum, provided the latter is not 
excluded by the conservation laws. We shall put 
a dash through such connected lines in order to 
distinguish them from the usual ones. After this 
the diagram will be completely analogous to the 
usual Feynman diagram for a matrix element. In 
particular, real pairs will be described by a loop of 
dashed electron lines. We note that if the matrix 
element is a sum of diagrams, then in the general
ized diagrams each of the initial ones is joined 
in turn to the mirror images of all the others as 
well as to its own image. 

In addition to virtual and intermediate lines, the 
fundamental elements of the generalized diagram 
will be: 

l. A real photon line. The factor for it is 

2. A real electron line. Its factor is 

3. Two identical photon lines between a pair 
of electrons, corresponding to the Coulomb inter
a:tion. The factor appearing for these lines is 

The integration in the generalized diagram is 
takenover all closed photon lines, dashed as well 
as undashed, and over electron loops made up of 
ordinary and dashed lines. In the case of a loop, 
one also takes the spur. The factor 1/ rri for photons 
and -1/ rri for a loop occurs only for virtual proc-

esses. 
All of the rules given here refer to the case where 

the detailed characteristics of the emitted particles 
<re not of interest (or are determined by conserva
tion laws), i.e., we have closed lines. If this is 
not the case, then the usual factors for re:1l particles 
occur. As examples, generalized diagrams are 
shown in Fig. 2 for: a- Compton effect, b - elec
tron-electron scattering, c -materialization of a 

pair in the field of an electron. We show only one 
of the graphs for each effect. 

a 

FIG. 2 

4. SCATTERING ACCOMPANIED BY RADIATION 
OF ADDITIONAL QUANT A. 

We now consider scattering with radiation of a 
single additional quantum x,. We shall supose that 
the quantum is free (x, 2 = 0) and that to the free 
line there corresponds certain /}.m 1 and /}.m 2 , sub
ject to the conditions m/}.m << qx << p' q. It is easy 
to see that the additional factor from the new vertex 
cancels against the factor from the internal elec
tron line. There remain only lines which surround 
the fundamental vertex, or which circle both ver
tices. Since lines of these two types can be shifted 
arbitrarily, integrations over them are carried out 
independently, i.e., we must find the contribution 
from the lines surrounding both vertices, and then 
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multiply by the a Ire ady known factor for th-e funda
mental vertex. As for lines surrounding both ver
tices, we see that, because of the appearance of a 
new denominator, we must impose the condition 
\ P· q u j << q•:x, in order to separate out the logarith
mic part of the integral over u. We easily see that 
the new lines again give an exponential factor, while 
the sum of the exponents of the two exponentials 
does not depend on q·x, but is determined 
only by the values of a, /'l.m and /'l.m . Now con-

'd · b' b 1 'f dd' ·2 1 SI ermg an ar Itrary num er o a Itwna quanta, 
we arrive at the conclusion that this same situa

tion always occurs, i.e., the net effect of the vir
tual lines is a factor common to all the diagrams 
of scattering with radiation. 

We now g~ on to consider the case of an arbi
trary number of real quanta. We shall con-

a 

c 

FIG. 3 

to the one on the right, b--the p line on the left to 
the one on the right, c--the left q line to the 
right p line, d--the left p line to the right q line. 
If we consider the possible transpositions of 
lines we see that each group can be treated in de-

s~de.r the probabilities of processes involving ra
diatiOn ~£ l,2, ... n quanta, making the following 
assumptions: 

a). The total energy carried off by the quanta 
does not exceed UJ 1in the rest system of th~ ini
tial electron, .and does not exceed UJ 2 in the rest 
frame of the fmal electron. 

b). We associate with free electron lines, in 
all diagrams considered, certain values /'l.m 1 and 
/'l.m 2 , such that /'l.m 1 << m, /'l.m 2 <<m and af'l.m 1 
>/1m 2 > f'l.m 1 Ia. In the present case the /'l.m are 
auxiliary quantities and can be chosen arbitrarily. 

Let us consirler the generalized ditgrams corre
sponding to scattering with radiation. It is not 
hard to see that four groups of real lines occur 
(see Fig. 3): lines joining a--the q line on the left 

--------+---------------+--------
b 

d 

pendently. For the same reason as before, we can 
use zeroth order values for the new vertices and 
electron lines. Consider a line of type a. There 
corresponds to it the factor 

_ 2e2 \ Ya(q+k+m)yf'-(q+m)yf'-(q+k'+m)y.,ll(k2)d4k 

j [2m6.m2 + 2 (qk) + k2]2 

(27) 

If we choose the time axis of the vector k along 
the direction of q and keep only the logarithmic 
part of the integral, we see at once that it is equal 
to 

if w 2 << m. In the opposite case, w2 in (28) 

should be replaced by m. 
If we consider successive lines of type a, it 

t~rns. out.that to get the maximum degree of loga
nthmic Oivergence in the integral, the lines must 
not intersect. Upon summing the integrals, we get 
the total result (for UJ 2 << m) . 

(29) 
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Similar expressions also occur for type b. 
Now we go to lines of type c and d. Both types 

of lines give the same contribution. If we consider 
one of the lines, for example of type c, then we 
find thl'lt the integral obtained differs from the 
integral for the case where the photon is virtual 
only by the fact that in case c we have q + 1 in 
the denominator, in place of q- k for a virtual pho
ton, i.e., the difference is merely a sign change. 
Actually, just as for the case of a real photon, the 
main term for the virtual photon case comes from 
taking the 0-function in the photon propagation 
factor. The change in the domain of integration 
also produces no difference, since the double in
tegral over positive frequencies corresponds to a 
double integral over u > 0 and the corresponding 
v. Rut we know that the region u < 0 gives the 
same contribution. 

Thus we obtain for a single line of type c an 
expression proportional to the area cross-hatched in 
Fig.1, from which the lower part is cut off by the 
lines),= In (amjw1),!L =In (am/w2). This expression 

appears as the exponent in the sum over all lines. 
Multiplying the common exponential factor from all 
the real lines by the common exponential for all 
the virtual lines, we find that we get in the expo
nent an expression of the type of (26), ;yith .;1 
and ~replaced by In( m/w 1) and ln(m/w' 2). Now 
it is no longer difficult to explain the physical 
meaning of (20), and also to give the reasons why 
the other cases of (20) have no physical inter
pretation. 

Upon comparing the formulas with the w's with 
formula (26) it is evident the latter determine the 
matrix element for scattering with radiation of ad
ditional quanta with energy not exceeding 11m 1 

in the coordinate system of the initial electron 
and no greater than 11m 2 in the frame of the final 
electron. If we assign the quantum frequency in 
one coordinate system, say wl' then upon trans
forming to the other system, we find that w2 lies 
within the limits 

(a+ V a2 - 1) wl > c,)2 > (i)1/(a + 110:~- 1 ).(30) 

We note that the sloping lines hounding the inte
gration region in Fig. 1 correspond to just this 
condition. For this reason, if we impose the con
dition w << w 1 in one coordinate system, then the 
maximum frequency in the other system cannot 
exceedw1 (a+Vaz- l). and conversely, i.e., it can 

actually he varied independently of w 1 only within 
the interval given above. It is therefore clear 

that all the cases of (20) which are not contained 
in (26) have no physical meaning. 

In a physical formulation of the problem, the fre· 
quency is limited in some one definite system. In 
general, such a hound would appear in Fig. l. as 
some line hounding the cross-hatched region at its 
upper right corner. This line can he found by de
termining the maximum value of w2 for a given 
limiting frequency wand a given w 1• We shall not 
try to find the appropriate expressions for all cases 
which may arise, but merely point out that the 
resulting expression for the probability of a process 
with radiation of an arbitrary number of quanta with 
energy less than w in the system of the initial elec
tron, and of n additional quanta in the energy in
terval from w to w' is: 

W = (W,'ofn!) e-2ft(w) [jl (cu)- fl (&l))n, (31) 

where N etl) is the [ 1 of formula (26) with In (m/ w) 
substituted for .;1 and ln (m/ w) + Tf in place of .;, . 

Formula (31) is the familiar Poisson formula, 2 

and corresponds to the probability of n independent 
events. This is understandable, since we are deal
ing wth quanta of such low energy tha the radia
tion of these quanta essentially does not affect 
the electron's momentum, so that the radiation pro
cesses are actually independent. This result which 
we have obtained by a direct summation of diagrams 
was also demonstrated by Glauber 8 for the radia
tion of photons by an electron described by a 
given current. 

We should point out that in order to get the cor
rect result by such a method, we must impose re
strictions on the domain of integration; these ac
tually amount to a determination of the limits of 
energy and quantum frequency up to which the 
current can be regarded as classical. Strictly 
speaking, these limits can be obtained only through 
a quantum description of the current. This situa
tion is not serious so long as one deals with 
quantum frequencies which are so small that 
In (m/w) >> ln(E/m), but is very important for high~r 
qumtum energies. 

In conclusion, I express my gratitude to Acad. L. 
D. Landau and V. V. Sudakov for many valuable 
comments. 

8 R. Glauber, Phys. Rev. 84, 395 (1951). 

Translated hy M. Hamermesh 
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