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A method is developed for calculating Feynman integrals with logarithmic accuracy, 
working to any order of perturbation theory. The method is applied to calculate the ver-
tex part in quantum electrodynamics for a certain range of values of the momenta. The 
result is displayed as the sum of a perturbation series. 

'~ l J.HE technique of Feynman for calculating ma-
trix elements in quantum electrodynamics is only 

suitable for the lowest-order approximations, since 
the algebraic complexities increase extremely ra­
pidly when we consider contributions to the matrix 
element from higher-order perturbations. When per­
turbation theory is not applicable and it is neces­
sary to .consider the sum of the entire perturbation 
series*, another technique must be developed. For 
example, one elegent method 3 of calculating inte­
grals with logarithmic accuracy depends on chang­
ing k into ik 0• This method is, however, not app­
licabfe to all cases. In particular, it is inapplicable 
to the calculation of the -vertex part r (]' (p, q; l) in 

In what follows we shall everywhere omit the limit­
ing process, simply choosing <to be a positive 
number so small that it does-not make any contri­
bution in the final result. We shall evaluate (l) 
supposing that 

(2) 

where l = p- q. For simplicity we assume 

(3) 

* We do not need to worry about the divergence of the 

pertur.bation series, 2 which occurs at much higher 
energies than those which we consider. 

1 R. P. Feynman, Phys. Rev. 76, 769 ( 1949) 

2 
F. ]. Dyson, Phys. Rev. 85, 631 (1952). 

3 L. D. Landau, A. A. Abrikosov and I. M. K.halatni­
kov, Dokl. Akad. Nauk. SSSR 95, 497, 773, 1177 and 
96, 261 (1954). 
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the case when the absolute value of the square of 
one of the vectors p, q, lis much larger than the 
absolute squares of the other two vectocs. This 
case is especially important foc concrete physical 
applications. There ippear in this case terms with 
the structure e 2 L 1 L 2 , a product of two big loga­
rithms entering with each power of e 2 (we call 
these doubly-logarithmic terms). Rut the earlier 
method 3 can give only terms with the structure 
e 2L (singly-logarithmic terms), in which one large 
logarithm enters with each power of e 2• 

l. To explain the method+ of obtaining the 
doubly-logarithmic te*rms, we shall consider as an 
example the integral 

(l) 

which allows us to omit m2 in the first two factors 
of the denominator in (1). 

From (2) it follows that to a close approximation 
/ 2 = -2pq, which allows US to rev.Tite (2) in the 
form 

(2a) 

Hence it is clear that the squares of the vectors p, 
q are very small compared with the squares of 
their components; the squares of the vectors p, q 
are almost null. 

+In this paper the Feynman notations are used: 

* The integral (l) is singular. To define it precisely 
we have to specify the Feynman rules for integrating 
round the poles. This is done by adding infinitesimal 
imaginary terms to the factors in the denominator. 
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It is very useful, and appropriate to the nature of 
the problem, to introduce variables u, v, x, in terms 
of which the vector k takes the form 

k=kn+kl.=up+vq+kl.; k'i=-x. (4) 

The vectork_Lis perpendicular to p and q, while ku 
lies in the plane of p and q. 'lben the inequality 
(2) holds, the time-axis can be chosen to lie in the 
nlane of p and q. Therefore the vector lg_is space­
like, and the variable x takes only positive values 
X> 0. 

A rigorous argument (see Appendix 1) shows 
that the region in which doubly-logarithmic terms 
appear is limited by the inequalities 

I q2 I l2 1 ~I u I ~ 1, I P2 I 12 1 <S I vI <{: 1, (5) 

x~min[lf2ul, jl2 vj]. 

In this region the integrand, written in terms of the 
new variables, simplifies considerably, and the in­
tegral (1) takes the form 

1 _ 1 (' du dv dx 
- - bn /I" I J u v x + 12uv- ie: · (6) 

In (6) we carry out the integration with respect to 

x, min [lz 2u I ll2v IJ 

~ 
0 

dx . r 1 1 ] 
x + L"uv-ie: =In mm fVl, fUT 

in + 2 [1- sign (£2uv)]. 

The first term vanishes after integration with re­
spect to u or v, and the second gi~es 

It is to be noted that only the imaginary part of 
the result of the x-integration is significant, and 
this imaginary part is different from zero and equal 
to irr only when 

(8) 

In the more complicated problem considered below, 
we carry out the integrations in the same order; 
after the x- integration we obtain an imaginary re­
sult, with the range of the subsequent u and v in­
tegrations limited by the same inequality (8). 

l.':'e may define the region determined by the in­
equalities (5) as the region in which the integrand 
is logarithmically maxi~al As we see from (6), 
the integrand is in fact triply-logarithmic in this 

region. nut various pa-ts of the range of integra­
tion almost compensate each other. One of the 
logarithmic integrations gives an imaginary result 
of the order of unity instead of a large logarithm. 

2. We calculate the vertex part r a-(p, q; l) in 
the region of values of the momenta defined by the 
inequalities (2), (3). In second-order perturbation 
theory it is given by the integral . 

(2) • e~ r o (p, cr, l) = -. 
• 11:l 

(9) 

The numerator may be expressed in terms of the 
new variables in the form 

~~ (p -· k)"(0 (q- k)r!' 

=r~'-[p(l-u)-vq-kl.J 

(10) 

X "(0 [q(l-v)-up-kl.]jfJ.. 

We average over the direction of the vector kl. 
Terms linear in k.L then vanish, while the quadra­
tic term becomes 

T-Tere o 1. Ap is a symmetric matrix definecl by 

(12) 

We are not interested in obtaining an explicit re­
presentation of OJ. A It will be enough for our 
purposes to know trfdt the eigenvalues of the ma-
trix o .LAp are 0 and 1 according to (12), so that 
the matnx is of the order of magnitude unity. Sub­
stituting (ll) into (10) we obtain 
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In the region of momenta defined by the inequali-
ties (5), all terms other than the term y ,JJY a- ijy 
are negligible, since the presence of the small 
factors u, v, (x/! 2 ) converts one of the integrations 
from logarithmic to non-logarithmic. Consequently 
all such terms are singly-logarithmic and represent 
small corrections to the main term. As is well­
known, the term with k2 in the numerator contains a 
logarithmic divergence which is removed by renor­
malization, the remainder after renormalization 
being singly-logarithmic. Since we are neglecting 
such terms, the process of renormalization can for 
our purposes be reduced to the following simple 
rules: (l) all singly-logarithmic terms are dropped, 
whether they are convergent or divergent; (2) the 
symbol e denotes the renormalized experimental 
charge. 

We consider the only surviving term in (13), 
namely 

(14) 

The operator 1 a-(p, q; l) always appears in dia­
grams with an electron Green's function on either 
side, 

a (p) r, (p, q; l) a (q). (15) 

1\Jow for p2 » m 2, G(p) takes the form (p/p 2). The 
operator (14), with the numerators of the Green's 
functions on each side, becomes 

A A 

P1p P1, qj.,_q. 
When the operators are commuted by the usual 
rules, ( 16) may be written in the form 

(16) 

We mentioned earlier that p and q are vectors with 
large components but with small lengths. Therefore 
the terms containing p2 and q2 explicitly are neg­
ligible, and (17) can be replaced to a good approxi­
mation by its last term 

(18) 
PT;r/n.,.q--? 4pqpr,q =- 2l2?r,{1. 

The original operator (14) thus becomes 

(19) 

Therefore 

r<2l ( . l) = - 2e2f2 
0 p, q, rti 1, (20) 

r dtk 
X ~[(p-k)2+ie:)[(q-k)2 +ie:)[k2 +ie:]' 

and so Eq. (7) gives 

r~2> (p, q; !) =- (e2 I 27t) 
(21) 

X'ln jl2 / p2 jln jl2 / q2 l1a· 

We now carry out the calculation of 1 (p, q; l) 
in the (2n)'th order of perturbation theory. Using 
the method described in Appendix 2, one can 
verify that the terms with the greatest number of 
la-ge logarithmic factors, i.e. terms of the type 
e 2L 1 £ 2, are precisely those in which all the vir­
tual photon lines overlap the point of emission of 
the external photon l. The general term of this type in 
the (2n)'th order contribution to 1 o-(p, q; l) is 

(22) y~'-1 (p-k~)Yu./P-kr-k2)··· Yp.n (p- ±
1 

k; ') Y, ( ~ r ~ --------.~:::-------;;------, 
1tl I 

0 [(p- kr)2 + ie:] [(p- kr- k2)2 + ie:]. • [ (p-* k; r + ie: J 

x [ ( q-* k; +kin+ k;n-lr+ ie: J. .. [(q-kiY +ie:] 

d'P1 d4 '<2 d4 '<n x----···--
k~ + ie: k~ + ie: k~ + ie: . 
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Pere i 1, i 2 , ... , in is a permutation of the inte­
gers 1, 2, ... , n. When i l' i 2 , ... , in = 1, 2, ... , n, 
we have the so-called "ladder diagram" in which 
the virtual photon lines do not intersect. For all 
other permutations i 1, ... , in' some of the photon 
lines will intersect. 

Just as in the calculation of the second-order 
contribution, all the k. may be dropped from the 

! 
numerator of th,( integrand. Any term containing 
even a single k 1 gives rise to a lower power of the 
large logarithm and is therefore a smgll correction 
to the main term. After dropping the k i' the opera-
tor remaining in the numerator is 

(23) 

As in the step from (14) to (16), we multiply (23) 
on each side by operators arising from electron 
Green's functions, and we commute the operators 
~ with y and q with y , dropping the small 

~- ~ik 
terms in ~hich p 2 or q2 appears explicitely. After 
removing the p and q which belong to the electron 
Green's .functions, we obtain the approximate 
equation 

(24) 

F:guation (22) then takes the form 

(25) 

" 
x [( q- ~ k1 + k;,y + isT1 

••• [(q- k;l+ isP 
1 

d'kt d~'.,, d'kn 
>< ,2 + . t.2 + ... -2--.- . 

"1 IE: 1(2 e; k11 +IE 

To evaluate (25), we introduce the variables ui' 
v ., x ., which we userl in the derivation of F: q. (7). 

! ! 

As we remarked in connection with the integral (1), 

the region which gives doubly-logarithmic terms is 
limited by the inequalities (5) for each triad of 

variables ui, v., xi' The important region is in 
fact even sma!ler, and its true limits will be de­
termined below. 

Ry analogy with the derivation of (7), we shall 
suppose that kJ..i may be neglected in every factor 

of the denominator except k/. This can be justi­
fied by an exact argument. In fact all our estimates 
reduce to the determination of the region in which 
the integral is logarithmically maximal. 

We first integrate with respect to xi' keeping only 
the imaginary part of the result. This gives 

f2ll;Vi < 0 

l"urvi > 0. 
(26) 

It remains to integrate with respect to Ui and vi the 
integral 

(27) 

. re2 . ? ]\dul dll2 due 1 - s1gn (l ) - ----
cr [4" u 1 u +a · • • n .J_u --"-· .. -+-u ,, 1 2 } I 2 I ! !l 

X 

All the integrations give a logarithm only in the 
ranges 

(28) 

Taking (28) together with (5) for each variable, we 
obtain 

(29) 

I q2/l2 l «::I u1J <{::: lu2l ~ ... ~I u"' I<__.::'::_ I, 
\p2j[2 «:--=:[v;lJ<<\v;21~, .. Jv;nl~l. 

Using (29) with (26), we can write down immediately 
the value of (22), 

(30) 

The result is identical for all diagrams of the type 
under consideration. The existence of diagrams 
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with intersecting virtual photon lines makes in­
valid the replacement of the summation of the per­
turbation series by an integral equation3. Therefore 

in our case the integral equation derived by Landau 
et al. 3 is incorrect. 

The number of relevent diagrams in the (2n)'th 
order is equal to (n!) (the number of permutations 
i 1, i2, ... , i}, We can now sum the contributions r. 
from these diagrams over all values of n, and ob-
tain 

(31) 

This expression for [' u(p, q; l) may be regarded as 
the scattering matrix element of a bound electron 
by an external field or by a virtual photon. Equation 
(31) shows that the prob~C~hility of such a scattering 

tends to zero as I !2 I tends to infinity. Processes 
in which a large number of real photons are simul­
taneously emitted 4 will occur with much greater 
probability. The method developed in the present 
paper is in no way limited to the problem here con­
sidered. 

In conclusion I express my thanks to Acade­
mician L. D. Landau and Professor I. Ia. Pomeran­
chuk for suggesting the problem and for their con­
stant attention, and to A. A. Abrikosov for many 
valuable comments. 

APPENDIX 

l. For the purpose of calculating integrals with 
logarithmic accuracy, it is advantageous to intro­
duce instead of the vectors p, q the pair p: q' 
given by 

p'=p-(/.zq, q'=q-(/.lp, 
(A1) 

with cx.1' cx.2 chosen so that the squares of p 'and 
q' are rigorously zero. Since the squares of p and 
q are "almost" zero, cx. 1 and cx.2 are small quanti­
ties. With high accuracy we may write 

(A2) 

Since cx.1 , cx.2 are small, the transformation (A1) can 

4 A. A. Abrikosov, ]. Exper. Theoret. Phys. USSR 
30, 96 (1956); Soviet Phys. JETP 3, 7l (1956) 

be inverted to give 

P = P' + (l.zq', q = q' + (1.1p'. (A3) 

We resolve the vector k II along p 'and q 'and obtain 

ku = u'p' + v'q'. 
(A4) 

In terms of the new variables, the integral (1) 
becomes 

- 112 1 I (AS) 
I- 811: .) (l" (1 u') (v'- a 2)- .x+ ie:] 

du'dv'd.x' 
X [12 (1 v')(u' at)- .x+ie:][-l"u'v'-.x+ie:]' 

The advantage of the variables u: v' lies in the 
fact that according to (AS) the factors of the de­
nominator are linear in each of u' and v ~ This 
considerably simplifies the investigation of the 
region in which u: v 'take very small or large 
values. It is especially easy to find the region in 
which the integrand is logarithmically maximal 
in terms of the variables u ', v '; the upper bounds 
of the inequalities (S) are thus obtained imme­
diately. 

We calculate the integral (AS), integrating with 
respect to u' from -ro to +oo, then with respect to 
x, and finally with respect to v ~ The u' integra­
tion can be converted into a closed contour in the 
complex u 'plane by the addition of a semi-circle 
of infinite radius either above or below the real 
axis; the integral then reduces to a sum of residues 
at the poles of the integrand. If the coefficients 
of u' in the three factors of the denominator have 
the same sign, then the closed contour encloses 
either all three poles or none at all. In either case 
the integral vanishes. To prove this we need only 
consider the second case. The sum of the three 
residues is proportional to the coefficient of u '-1 

in the expansion of the integrand in negative pow­
ers of u ', and this expansion obviously begins 
with a term in u '-3. 

Therefore the limits of the integration with re­
spect to u ' are given by 

min[O, (/.2]<v< I. (A6) 

We can ea~ily ascertain that the region I v 'I rv lcx.2 I 
does not g1ve a doubly-logarithmic contribution. 
In the region I cx.2 I << v '::; 1, the expression ob­
tained after the u '- integration takes the form 
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(A7) 
1 

i (" (1-v')dv'dx 
I=· T ~ [/2v' (1- v')-x] [x + a112v' (1- v')]' 

v'>">l ~,1 

The value of the elementary integral (A7) coin­
cides with Eq, (7), as was to be expected. The 
important region in the integral (A 7) is limited by 
the inequalities 

(A8) 

I rx1l2V' I <Z.: x ~ ll2v' \, I oc2 1 ~ v' ~ 1. 

We can now simplify the expression (A5) by using 
the condition I v'l <<l at an earlier stage. We 
may also limit u 'by the condition I u' I << l. Con­
sequently we can now carry through the whole cal-
culation with the simplified integral -< 

(A9) 

X [[2 ( , ) + . ]-1 du' dv' dx 
u -rx1 -X lE [-l2u'v'-x+ie]• 

We retained the x in all terms of (A9); if the u~in­
tegration is now performed first, the condition x 
<<I v'l follows automatically, and also the con­
dition v '> 0. Bee ause of the symmetry of the in­
tegral (A9), we could equally well begin with the 
v ~integration, thus obtaining another upper bound 
to the important range for x(x <<I u 'I), and fixing 
the sign of u '(u '> 0 ). Therefore, so far as dbu­
bly-logarithmic terms are concerned, the integral 
(A9) supplemented by the conditions 

I u' I. I v' I ~ 1, (AlO) 

is equivalent to the integral (A7). The most sym­
metrical way of evaluating (A9) is to integrate 

first with respect to x between the limits 0 < x 
<< ll 2 u 1, ll 2 v 'I, which allow us to retain x only 
in the last factor of the denominator. The neglect 
of the other poles is equivalent to dropping a part 
of the integrand which vanishes after further inte­
gration. 

The calculation has been carried out with the 
same accuracy as the derivation of Eq. (7), with 
this difference, that we have not excluded from the 
beginning the region I u 1 rv I o.1 I, I v 'I rv lo.2 l, but 

have verified that this region is unimportant. In 
this region the variables u, v, can differ greatly from 
u; v; so even if the contribution from the region 
can be easily estimated in terms of the variables 
u: v: the same is by no means true of the variables 

u, v. For practical calculations, however, it is 
more convenient to use the variables u, v, limiting 
the range of the variables beforehand to the region 
(15). 
2. The same method can be applied to calculate 

terms of order e 2 L, when they are the largest non­
vanishing terms*. This situation arises in the 
calculation of r a(p, q; l) by second-order pertur­
bation theory, when IP21 » lq21 and IZ 21 » m2. 

As the simplest example which shows how to 
reformulate the method, we shall calculate an in­
tegral which differs from (A5) by an extra factor 
v'm in the numerator, m being a positive integer. 
The integrations with respect to u 'and x are com­
pletely unchanged; the integral with respect to v' 
ceases to be logarithmic and is to be taken be­
tween the precise limits 0 < v '< l. The integral 
which we shall calculate is 

I [kp., k.,.k,] (All) 

\ [ ? .... , ku.kv] d'k 
= .) fi[ (-:::p--;:-k )0' '+-,-i~'l ~[ (-</ -=--1?7-:)02 '+-t:-. e-;-] [;-;k-;-! -;+-----;-e] 

assuming the inequalities (2), (3) to hold. In the 
region lk21 « 1!21, the integral (All) is equal to 

dll 
u 

I 

~ d~ (kll p• k11.,.kif v), 
IP'i/21 

(Al2) 

where it is understood that the vector ku is writ­
ten in the form up + vq, and that after integration 
only the highest (first) power of the logarithm is 
to be retained. For the integral I [k) this is the 
only important region. For I [k11 lev l tb.e region 

[k 21 >> 1121 is also important; the integral diverges 
logarithmically for large k and is made finite 
only by being cut off for lk2 1 > A.2 • In the region 
IZ 2 1 « lk 2 1 « A.2 the integral (All) takes the 
form 

\ [0, ?J•vl rfk , 

.l [ !.'' + i~J3 
or, after averaging over the direction of k, 

* The error in the evaluation of terms of order e2 L L 
due to the uncertainty in the limits of the logarithmic! 2 ' 

integrals, is of. the same order of magnitude as the 
terms of order e <-L. 



The ~ast intvgral is evaluated 3 by changing k 0 
mto Lk 0, and 1J as the va ue 

(Al3) 

The results we have obtained can he innnediately 
applied to the evaluation of the second-order con­
tribution to 1 a-(p# q; l) in the case lr 2 1 » lq2 l, 
ll2 l >> m 2• For this we need only introduce va­
riables u, v, defined by 

k = q (1- u) + lv + k1.. (Al4) 

It is clearly advantageous to decompose k11 into 
vectors whose squares are small. The variables 
u, v are defined in such a way that the main part of 

the logarithmic integral comes from small u and v. 
After some elementary algebra, we obtain the result 

e2 [ A A / p2/ ~" (p, q; l) = 4.,.P lr" lln 12 
(Al5) 

In this case no doubly-logarithmic terms appear. 

Translated by F. J. Dyson 
12 
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The infrared catastrophe is investigated by summing over diagrams. Expressions 
are obtained for G(p) when e 2hrlnm2{p2 -m2J:<, 1 and fori (p, q; l) when p ·q 
>> p2 - m2, q2 - m2 • The problem of r:o~diation of additional ~uanta during the scat­
termg of an electron of arbitrary energy by an external field is considered. 

JT is well known that t.he calculation of matrix 

ele~en~s. o_f proce~ses m. quantum electrodynamics 
leads to mfmthes havmg V!rtous origins. Some of the in­
finities, which appear as a result of the divergence 
of integrals for large energies of virtual quanta 
and pairs, originate, as has already been pointed 
out 1, from an incorrect description of the interac­
tion by means of the 8-function. In addition to 
these infinities (which are considered in references 
1-4) there are also others, which result from integra-

1 L. D. Landau, A. A. Abrikosov and I. M. Khalatni­
kov, Dokl. Akad. NaukSSSR95, 497 (1954), 

2 L. D. Landau, A. A. Abrikosov and I. M. Khalatni­
kov, Dokl. Akad. NaukSSSR95, 773 (1954). 

3 • 
L. D. Landau, A. A. Abrikosov and I. M. Khalatni-

ko"t Dokl. Akad. NaukSSSR95, 1177 (1954) 
4 L. D. Landau, A. A. Ahrikosov and I. M. Khalatni­

kov, Dokl. Akad.NaukSSSR96, 261 (1954), 
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tion over virtual quanta with k 2 close to zero, when­
ever the diagram under consideration includes a 
free electron with p 2 = m 2• This situation always 
occurs for matrix elements of real processes and 
has been named the infrared catastrophe. It is re­
lated to the fact that the very concept of a free 
line is a convention. 

Actually, as shown by many authors 51 everyfl"OC­
e ss is accompanied by the radiation of a large 
number of low-energyquanta.. For this reason, a 
properly formulated problem must take account of 
the possibility of such radiation with frequencies 
up to some maximum <Urn ax' corresponding to the 
fact that areal experimental apparatus always 
has a limited sensitivity to small changes in the 
energy of particles taking part in the process. 

5 A. I. Akhiezer and V. B. Berestetskii, Quantum 
Electrodynamics GTTI (1953). 


