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. We have derived Lee's ?ifferential equations for the multiplicative normalization group 
m the, quantu~ theory ?f he Ids. As an ~xample of the application of these equations, the 
Green s functiOn of spmor electrodynamics has been derived in the regions of the infrared 
and ultraviolet catastrophes. 

} ONE of the basic problems of present day quantum 
• theory of fields, and, in particular, of quantum 

electrodynamics, is the question of the behavior of 
the Green's function when large momenta are 
involved. It is well known that, in quantum electro
dynamics, the expansions of the usual renormalized 
perturbation theory contain terms of the type 
(e 2 lnlk 2/m 2 i)n. Due to these terms, the expansions 
can give the asymptotic behavior only in the region 

where e 2 lnlk 2/m 2 1 << l. There arises, therefore, 
the apparently complicated problem of summing the 
series of perturbation theocies, in order to combine 
the important terms so as to put the results into 
the form 

In this, each of the coefficients[, fl'···fn ... repre
sents the sum of an infinite number of Feynman 
diagrams of various orders. 

The rmin term f of a series of the type (l} was 
found, for the basic Green's function of quantum 
electrodynamics, by Landau, Ahrikosov and 
Khalatnikov 1 using asymptotic solutions of com
plicated integral equations which can he obtained 
by summing a definite class of ''main" Feynman 
diagrams. However, it appears as if the problem 
of the transformation of the usual expansions of 
perturbation theory into the form (l ), as well as 
a number of other problems (for example, that of 
understanding the singularity of the electronic 
Green's function in the ''infrared region" k 2"-'m2) 

can he solved directly, without any summations of 
infinite series, using the renormalizing group of 
quantum electrodynamics. Attention was firstcalled 
to the existence of such a group and to its general 
role in quantum field theory by Stiickelberg and 

1 L.D.Landau, A.A.Abrikosov, and I.M.Khalatnikov, 
Dokl. Akad. Nauk. SSSR. 95, 497) 773, 11 77 (1954); 
96, 261 (1954). 

Petermann 2 • They also pointed out the possibility 
of introducing the corresponding infinitesimal opera
tors, and of constructing the differential equations 
of Lee. 

Starting with a different viewpoint, but in essence 
using the same renormalization group, Gell-Mann 
and Low 3 obtained concrete results on the behavioc 
of Green's function in the asymptotic region of 
large momenta. 

The purpose of this work is the extension of these 
ideas, and, in part, the derivation of general for
mulae for making use of the results of ordinary 
perturbation theory not only in the case of large 
momenta, but also in the region of the ''infrared 
catastrophe." 

2. In order to formulate clearly the equations 
describing the renormalization group of quan-

tum electrodynamics, we recall briefly the main 
points of the procedure 4 for the removal of diver
gences from the scattering matrix, since the Green's 
functions can always he represented by this matrix 
with the help of variational derivatives. As usual, 
we will start by expanding the scattering matrix 
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in powers of the interaction parameter. The co
efficients in such an expansion are the chronologi
cal T-products of various numbers of Lagrangians 
of the interactions. Taking advantage of the arbi
trariness implied in the 1'-products when all the 
arguments are equal, we can evaluate these products 
in such a way that taking into account the require
ments of unitarity, causality, and covariance, the 
resulting operator functions are integrable. In 

order that intermediate steps should not involve 
actual infinities, we can introduce at this stage a 
formal regularization, for example, of the Pauli-

2 
E.C.Sfuckelberg and A. Petermann, Helv. Phys. Acta. 

26, 499 (1953). 
3 M.Gell-Mann and F.E.Low, Phys. Rev. 95, 1300 

0954). 
4 N.N.Bogoliubov and D.V.Shirkov, Usp. Fiz. Nauk 

55, 149 (1955); 57' 3 (1955). 
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Villars type, which can be removed after the evalua
tion of the singularities. The recipe obtained for 
the evaluation of the T -products turns out to be 
equivalent to the usual subtraction formalism, 
which, in turn, is equivalent to the introduction into 
the original interaction Lagrangian of divergent 
counter terms. As a result of this procedure we get 
an expansion of the scattering matrix, no term of 
which contains divergencies. If it is assumed that 
an expansion of this type is summahle, we now have 
to do with a finite scattering matrix and a finite 
Green's function. The finite expressions obtained 
in this way still contain an arbitrariness corres
ponding to the possibility of introducing (into the 
Lagrangian) finite counter terms of the same opera
tor structure as the basic diverging counter terms. 
This arbitrariness, however, can likewise be removed 
if it be required that the theory describe particles 
with masses and charges equal to the experimentally 
known values of m 0 and e 0 • 

As has already been noticed by Dyson, the trans
ition from the divergent scattering matrix to a finite 
one by use of subtraction techniques is equivalent 
(except for the counter term corresponding to intrin
sic mass of the electron) to the multiplicative re
normalization of the elementary Green's function and 
of the charge of the electron. A more detailed 
analysis of Dyson's discussions and their applica
tion to the general theocy of Green's functions shows 
that, because of the presence of the counter term 

(which doesn't affect the scattering matrix elements 
because of the lorentz conditions on acceptable 
states, and which is therefore usually thrown awayt 
the subtraction procedure is equivalent to a multi
plicative renormalization only when the unperturbed 
photon source function is chosen to be 

(2) 

thus satisfying conditions of transversality. 
This requirement was not noticed by Gell-Mann 

and Low, who tried to study the group equations 
for the Green's function of an electron by using the 
expression for the Green's function of a photon 
which is not transverse. As a result they arrived at 
a contradiction which we will discuss later. 

As has already been mentioned, after removal 
of the infinities of the theory, there still remains a 
finite arbitrariness. We will now analyze in more 
detail this arbitrariness, paying special attention to 
its relation to the multiplicative renormalization of 
the Green's function and of the charge on the elec-

tron. 
We will thus consider that, having removed the 

infinities by using some definite subtraction method, 
we have obtained finite Green's functions G and D, 
and the vertex part of ['. In this case, due to the 
identity of the mass of the electron with its experi
mentally observed mass, the counterterm om is 
uniquely determined, irrespective of any new mult
iplicative renormalization. The counterterm Z 3 is 
completely determined by the requirement that the 
electronic charge be the same as the experimentally 
measured e 0 • At the same time, the multiplication 

of the diverging constant Z by the finite factor z 
3 3 

leads to a finite renormalization of the charge 

(3) 

Finally, the counter terms Z 1 and Z 2 are found to be 
determined to within finite constants z 1 and z 2 , 

subject only to the Ward identity 

Z 1 _.,. Z1z 1 ; Z2 --7 Z2z2; z1 = Z2. (4) 

In view of the fact that chl'!._nging the counterterm 
in the investigated situation{2) leads to a new normal
ization of the Green's function, we arrive at the 
following set of finite transformation of finite quan
tities. 

(5) 

01 __,. 02 = z201; rl --7 r2 = z;.-1rl; zl = z2; 

The sense of the tranformations (5) is that the 
use of the quantities [' 1 , G 1, D 1 and e 1, in the 
theory, leads to the same results as the use of 

[' 2 , G , D 2 and e 2---- -that is, to a description of 
particfes involving masses and charges equal to 
their experimental ones. The transformation group 
(5) represents the '' renormalization group" of 
Stiickelberg and Petermann 2 , and makes it possible 
to get simple functional equations for the Green's 
functions that are similar to those of Gell-Mann 
and Low. 3 

3. Bearing in mind that such equations can be 
obtained, let us represent G and D in the form 
(the vertex part of[' will be examined separately): 

(6) 

. ( k k ) Dmn (k) = -P- gmn- ~2 " d (k2 ). 
(7) 

It should be noted that the determination of G 
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and D involved two arbitrary constants z 2 and z 3 

which can be determined by using the following 
relations: 

d = 1, a = 1 where k 2 = ),2, (8) 

when A 2 < 0. The discussion that follows is easily 
generalized to the case of A 2 >0 where it suffices 
(due to the complex nature of the functions being 
studied when lr,2 > 0) to study only their real parts 
separately. From considerations of single valued
ness in momentum space it follows that a, b, and 
d have the form f(k 2/A 2 , m2/A2 , e 2),wherefore, upon 
fixing the momentum A, 

It should be pointed out that the second of the 
conditions (8) does not ~ppear to be necessary, 
since, if, for example,, k2'=A 2 , a=a 0 , then an unim
portant multiplying factor will be involved in the 
following discussions of a 0 • 

The square of the momentum A 2 can be directly 
related to the charge e. Insertion of (7) into the 
second equation of (5), and using the third equation 
of (5), we get 

d (k2 I 1.~, m2 I 1.;, ei) 0 0) 

= Z3 d (k2 I l.i, m2 I Ai, ei), 

h 2 -1 2 w ere e 2=z 3 e1 • 

If we assume that k 3=A 2 , in (1 0), we get, from (9) 

(ll) 

from which there follows the functional equation 
for d 

(
k2 m2 2 \_d(k2 l)..~,m2 j)..~,e~) 

d )..i ' )..i ' el) - d ()..i I)..~, m2 I)..~, e~) ' (12) 

in which 

2 2 d (' 2 ' ) 2 2 ' ' 2 2) e1 = e2 · '·1 1 '2• m I 1·2• e2 · (13) 

Let us now identify the charge e 2 occurring in 

I<.:qs. (12) and (13) with the observed values of the 
charge e ~. In this case the true photon function 
is normalized at the point k 2=0, and so has the 
form 

d = do (k2 I m2, 2) eo. 
We have, consequently, 

(14) 

(15) 

Let us now treat the fermion Green's function. 
We will treat simultaneously the functions a and 
b, giving them for this purpose a general designa

tions. Having written down equations for s 
analogous to (l 0), and having determined the 
constant z 2 , we get, after eliminating of z 2 , the 

.functional equation for s 

f?2 

s ( ).~ ' 
(16) 

4. We now proceed to the solution of the differ
ential equations for d and s. If we make the 
substitutionsk 2/A 2 =x m 2/A 2 =y A2 /A 2 =t we can 

2 ' 2 ' 1 2 ' 
write (l 2) and (16) in the form 

(l 7) 

= e2d(t, y, e2 )d(xlt, y It, e2d(t, y, e2)) 

and 

lns(x, y, e2) = lns(xjt, yjt, e2d(t, y, e2)) 

+lns(t,y, e2)-lns(l,yjt, e2d(t,y, e2)).(1 8) 

If we differentiate (1 7) and (18) with respect to 
x and then let t=x, we get the sought-for Lee 
equations in the form 

ae~d (x, v ,e3 ) 

ax 

a 1 n S (X, y, e2) 

ax 

e~d (x, y, e'!) 

X 

X 

09) 

(20) 

We now see that to get the functions d and s for 
all values of their arguments it is sufficient to 
determine d(k 2 /A 2 , y, e 2 ) and s(k 2 /A 2 , y, e 2 ) 

only in the neighborhood of k 2 /A 2"'-'1, for which 
one can use usual perturbation theory. 

The equations obtained illustrate the fact 
that due to the renormalization group it is 
possible to vary the scale of momenta, at the 
same time changing the charge. 

We now notice that actually we have only to 
solve equation (19), since, for a given d, the ex
pression for s can be obtained from (20) by simple 
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quadrature: 

s (x, y, e2 ) 

s (x0 , y, e2 ) 

(21) 

r 

= ~ d:- [ :~ Ins ( ~. -~ ezd (z, y, e2)) J~=t . 
.t", 

The charge e 2 appearing here is related to the 
experimental charge e 0 

2 by the expression 

which makes it possible to consider e 2 as a func
tion of..\. 

We now make use of the general group equations 
that we have obtained, for the region of large 
impulses: jm 2/k 2 j<<1. When we set ..\ 2"-'k 2 , we 
see that in the given region the expression 

when k 2 < Oasymptotically approaches e~d0(k 2/m 2 , 

e~). From the other side (22) is identically equal 
to e~d( k 2/m 2 ,e~). For this reason, letting d 0as 

indicate the asymptotic part of the function d 0 , we 

have everywhere: 

e~d~c (k2 I m2 , e~) = e2d (e/ m2 , e2), 

where e 2=e 2 =e 2 d0 ,(1 e 2). In exactly the same 
m 0 US\ ' 0 

wax, we can convince ourselves that the expression 
s(k 2/m 2 ,e 2 ) is the asymptotic form of the functions 
to within an unimportant constant multiplier. 

Thus, to get the asymptotic form of the functions 
in question we can insert into our equations (19), 
(21) x=lk 2/m 2 1 and eliminate y. We then obtain: 

ax 
where 

(24) 

and, moreover 
X 

= ~ d; [ :~ Ins(~, e2d) J~= 1 • (25) 

·'• 

Integrating the differential equation (23) by the 
usual method of separation of variables, we come 
to the equation obtained by Gell-Mann and Low. 3 

e'd 
1 dz _ 1 J Zcp (z) - 1ilX. 

(26) 

e' 

Furthermore, introducing into the integral (25) a 
new variable e 2d for z, we find on the basis of (23) 
an equation for the determination of s in the form 

(27) 

e 2d~x) a 
= \ ___!!!___[-a~ Ins(~. z)]._ .. 

~ zcp(z) " ;-1 
e 2d(Xo) 

~e now make a series of observations about the 
Gell-Mann·-Low equation in the form (26). First, 
it is obvious that in order to use this equation for 
the actual determination of d , it is necessary to 
have an expression for the functioncp( z ). It is not 
hard to get such an expression with the help of 
perturbation theory. 

We have, in fact 

d-1 (1;, e2 ) = 1- ;; In~- :;2 1n~ + ... 
and, therefore, on the basis of (24) 

1 37t { 1 3z 2 + } --=- --4 +alz .... cp(Z) Z 1t (28) 

Next, it is not hard to conclude, from equation (26) 
that the magnitude of e 2d ( x) cannot remain small 
for all values of x. Actually , for small z 

I /cp(z)<Prr/z)(l +c), 
where c is a constant. For this reason, as long as 

e 2dis small, we will have: 

e2 d 

In x < 3n: (I +c) ~ ~~ 
e' 

co 

< 37t(l +c)~ ~~ = 37t (~2+ cl 
e' 

and then the corresponding· possible values of I k 21 are 
hounded. 

It should he pointed out that the argument of the 
function cpis the square of the charge. Because of this, 
in order to understand the behavior of the Green's 
function at extremely high momenta, when e 2 d becomes 
of the order of unity and larger, it is necessary to ex
amine the region of large charges(strong focces). In 
this connection it should he emphasized that the struct
ure of cr(z) here cannot he established on the basis of 
an analysis of a finite number of terms of an expansion 
of the type of (28). It would appear as if the region of 
such momenta is unimportant practically, since it is 
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hardly to be expected that electrodynamics, as we know 
it, ignoring as it does heavy particles, is any good at 
energies of the order of me 13 7 I 2. 

However, as is correctly pointed out by Gell-:Vlann and 
Low, the study of this region is an interesting mathe
matical problem, which might be useful in the construct
ion of future theories. For example, if, as a result of 
n,ore detailed investigations, it should turn out that 

00 

__ / = ~ rfz / 
zcp ( z) ---.._ ' 

e• 

then the hypothesis of Landau and Pomeranchuk con
cerning the essential incompleteness of present 
day electrodynan1ics would be confirmed. This 
follows since 

m 

\ 
f?Z \ \" rfz 

In m2 <jzcp(z), 
e' 

and the possible values of lk 2 1 are therefore boun
ded, which is contrary to the assumption that the 
theory is local. 

Since at present we do not have any other informa
tion about the behavior of the function q;(z) than the 
expansion (28), it is necessary to restrict our
selves to momenta for which 

(29) 

In this region a very simple expression ford can 
be obtained* from relations (26) and (28). 

We emphasize that even the general problem of 
the construction of the renormalized usual expan
sion for d in the form (l) in the case where (29) 
holds can be solved directly. In fact, setting (28) 
into (26) we find 

1-d 1 + ~ e2 1nd-1 
47t 

e2 + a 1e4 (d-l) + ... = 37t lnx, 

from which we immediately get the sought-for ex
pansion: 

(30) 

+ 4
37t e2 In (I - 3~ In x) + e4 • •• 

Completely analogously we can get an expansion of 
the type (l) foc the asymptotic form of the function 

* Comment in proof: Landau5 has used this case to 
obtain corrections to the formula for d derived in Hef. l. 

5 L. D.Landau, Nils Bohr and the Development of 
Physics, London, 1955, p. 52. 

S=a,b which determines the electronic Green's 
function. For this it is only necessary to make use 
of our equation (27) and usual perturbation theory 
formulae: 

a(x, e2)= 1 + ce4 lnx +. · · 

b(x, e2 ) = b1 {1- 3e2 Inx 
Lm 

where c, b l' 0( 1, 0( 2are numerical coefficients. 

We have: 

[ :~ In a (~. z) 1~= 1 = cz2 

(31) 

[ a ) 3~ z2 + .. · - In b (~ z) .= - ___::_ + oc,, - + ... ' o~ ' i;=l 47t ~ 1ta 

Inserting these expansions, together with (28) into 
equation (27), we will find that 

In a (x, e2 ) = e23Trc (d- 1) + · · ·; (32) 

In 

+ e2 : ( oc2 + 1
9
6) ( d - I) -1- ... 

In order to get expressions of the type (1) for the 
functions a,b, it remains only to use d from equation 
(30). 

If we restrict ourselves to the n1ain terms, we get 
the formulae of Landau et al 1. 

We emphasize that the formulae (31) have been 
obtained from perturbation theory using only the 
transverse source function of the photon (2). It 
is easy to see that if we use, instead of (2), the 
usual coupling 

DC,n = igmn / k2, 

we arrive, in (32) at relations not agreeing with the 
true asymptotic behavior (1} for this situation. As 
we have mentioned, this contradiction was reached 
Ly Cell-Mann and Low who worked with the usual 
photon couplings. 

As we see, the method used here does not require 
summation over infinite systems of Feynman dia
grams. In order to determine the series (1) through 
members of order e 2n it is sufficient to have for 
the functions d ,a,b, being investigated, only for
nmlae of the usual renormalized perturbation theory 

f d 2n+2 Th · · to an accuracy o or er e . etr converswn 
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into form (1) is merely an algebraic operation. 
All these remarks have been on the use of the 

general Lee equations of renormalized groups that 
we have obtained for the purpose of constructing 
the asymptotic parts of the Green's function for 
large impulses. I'Ve emphasize that the meaning of 
these equations is not at all limited by such a use. 

For example, let us examine the region k2rvm2 
in which the electronic Green's function has a 
singularity. Since d here is regular, we are interes-

The interval of integration has to be taken as indi
cated in order not to fall into the pole x-1=0. For 
this reason we set k 2/m 2>1, k~/m2>1 or k 2/m 2<1, 

k 2/m 2<l. In order to use in pl'actice, the relation 
(£4) for the determination of s, .we see that it is 
necessary to know the function S((,x-1,e 2) only in 

ted only in the functions s=a,b. It will be convenient 
to express them in the form 

(33) 

Let us now return to equation (21) and set y=l. 
Then, using the representation (33) we will get: 

(34) 

the irfinitesimally small region of the point 
.$=(k 2-m 2)/(A 2-m 2)=1, which is it~ 'point of normal
ization". For this reason, in order to obtain the 
part of (34) in square brackets, we again use per
terbation theory formulae. 

Taking the second approximation: 

A(~, y, e2) = 1 _ 3e2 (In ~y -~!ny) . 
27t 1 + ~y 1 + y + ... ' 

B(~, y, e2 ) =I- ~:2 ((: i{y In~y __ /;Y) + ... ; 
e2d(x, I, e2) = e2 + ... , 

we find 

[ :~ ln A(~. x- 1, e2 d) J~=I 
= 3e2 [ \ x - 1) 1 ~ I x - 1 I _ .!..] + ... ; 

27t X X 

[:~ lnB(~, x-I,e2 d)]~=1 
= 3e2 [(x- 1) 1 n 1 x - 1 I _ x +x 1 J + ... , 

47t _ x2 

and from (34) we get 

a (x, 1, ec) 
a (x0 ,1, e2 ) 

X (/ Xo - I I) (aez[47t) (l+.t'o)/.t'o • 

From this we see that the functions a,b, near 
k 2""m 2 have the well known ''infrared singularity." 

(II k2 ')-ae'f2rt a---a0 -~~ • 
m" I ' (35) 

(I k2 ~\-3e2/2Tt 
b --- bo I - 2 I · · m , 

Such a behavior for these functions actually fol
lows directly from (34). Indeed the main part of the 
integral on the right side of this equation in the 
region of interest will he: 

a(e2)lnjl-~: j 
and, for this reason, the main part of the function 
s will he 

I ll2 I" (e•) C 1 - nz2 ; C = const. (36) 

We have seen that second order perturbation theory 
gives fer the exponent "'(e 2 ) the value -3e 2/2rr. 

We now make some remarks on vertex parts. Let 
us take for example, the vertex value of r with two 



MULTIPLICATIVE RENORMALIZATION GROUP 63 

electron lines and one photon line. The transforma
tion law for r~ in the multiplicative renormalization 
group, as is well known, will be 

(37) 
whereupon 

(38) 
From the other side, under our ''A-normalization", 
the l' function, from considerations of single val
uedness in momentum space must have the form 

We find, then, from (37) and (38) 

I , (_!!._ k - q _!!3_ 2 ) 
' ' ' ' A ' eA, \"2 "2 2 

(39) 

in which 

e~, = et d U-i I),~, m2 I~-~. et). 

If here we take Ai, to be of the order of the 
larger of the quantities Jk 2 J, J(k-q) 2 J, Jq 2 J, we can, 
using these formulae, study the behavior of r for 
arbitrary values of k ,k-q ,q as the largest of the 

quantities 1 k2 I ni21, l(k ~ q)2fm2J, 1 q2fm2/ 

gets to be of the order of unity. 
We note, in conclusion, that the method of re

normalization groups that we have presented can 

where s=a,b,r,d. 

Hence, arguing as before, we get the general 
Lee equations in the form 

be carried over likewise into meson theories also. 
For example, let us consider the neutral pseudo
scalar theory. 

We set: 

where m,JL are the experimental masses of the 
nucleon and meson. With these designations the 
renormalization group will be (if we neglect some 
difficulties connected with the introduction of a 
direct meson-meson interaction, arising fr:om the 

) ** presence of the known four vertex part : 

(40) 

It is convenient, further, to introduce the function 

(41) 

for which 

(42) 

We now make use of A-normalization, and set 
d=J,.S=l for p 2=i\ 2 • Then, drawing on considerations 
of single valuedness in momentum space, we note 
that all functions being studied will depend only 
on the arguments 

p2j),2, m2j),2, fl·2f),2, g2. 

For this reason, we get from (40) and (41 ): 

(43) 

** Remark in Proof. An investigation of the renormal
ization group in meson theory taking into account direct 
meson-meson interactions has recently been carried out 
by one of the authors.6 

6 D.V.Shirkov, Dokl. Akad. Nauk. SSSR, 105, 972 
(1955). 
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a ( 2~ (- . 2))- g·23(x,y, z, e2) [_!!_ ~ (- L ~ 2 ~)] 
(fX g 0 X, y, Z, g -- X (J~ o \ c;, X ' X ' g 0 ~=1' (44) 

a ( ~)] 1 r a I ('" y .Z 2 ~ \] ox [Ins x,y,z,g" =-x- at ns ''x'x'g o) ;=1 • 

In the region of high momenta, when [k 2 /m 2[»1, 
[k 2/p 2 -[»1, equations (44) can be simplified, just 
as in the case of electrodynamics, by setting 
x=lk 2/m 2 [ and discarding y and z. 

into which we can introduce perturbation theocy 
formulae. Completely analogous equations can be 
written for charge symmetrical theories. 

We then obtain: 

£;"'8 
\ dt 
~ t~(tf = lnx; (t) r a ~ _ t' J' 9 = l-a" o (t;, ) ; c; i;=l 

c;z 
e' d(x, g') 

s (x.~~) _ (" dt [ il 1'- J 
ln s (xo. g2)- ~ t<p (t) af Ins(,, t) ~=I, 

ez d(x,, c;2 ) 

Translated by A. Turkevich 
11 


