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where lfli0~, 1/1;0~ are vave functions of the free 

molecule <I>N (N), <I>N (N) are wave functions of 
0 O+l 

the free field, and N is the number of photons. 
Substituting (14) in (12), multiplying first by 

1/J~o)·, then by 1/J~o)*, and integrating, we get two 

equations. The condition of their consistency 
gives: 

Transitions of the system molecule + field \vith 
radiation of quanta of energy g1- 2-2 = M10 are 
thus possible. It is also not difficult to demons­
trate that the matrix element of the dipole moment 
corresponding to the transition at the frequency 
no is proportional to 1!22- tl 1. 

Let us note that the measurements of the 
frequency no offer the possibility of the experi­

mental determination of the matrix element IV 1 2 1, 
which is proportional to the product of the dipole 
moment and the magnitude of the field intensity F. 
Such measurements offer a method for the precise 
determination of the field intensity of frequency w, 
if the matrix element lit 1 2 1 is known. If conversly, 
the field intensity of frequency w is known with 
sufficient precision, it is possible to determine 

/1 1 2 precisely. 
Let us evaluate the order of magnitude of 

possible frequencies no rv I tl 21 F /h. Let lt1 21 
"-' 1 o19 sec- 1 and/''= 1 cgs unit= 300 v/cm; 
then n 0 "" 1 0 9 sec -l • If, however, F = 1 0 cgs 

units, then n0 = 101 0sec- 1 • By changing the field 

intensity at the frequency w, we can change the 
frequency n' which presents some convenience in 
the experimental handling of the problem. 

In conclusion, let us note that radiation at the 
frequency no will be observed only foc molecules 
whose dipole n,oments !I11 and 1!22 differ from . 
zero. 
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1 prev10us p 1cat10ns ' an expressiOn was IN . ubl" . l 2 . 

obtained for the surface impedance of metal in 
the case of anomalous skin effect*. It was then 
assumed that the integral of collisions can be 
written v. ith the help of the relaxation time r in the 
form: 

(of I ot)st = (/- fo) I -r, (1) 

where f is the electron distribution function, f (E) 
is the Fermi equilibrium distribution function. 0 

Introduction of the relaxation time can be 
rigorously established only at high temperatures 
(T » G, 8 the Debye temperature). At lower 
temperatures, the collision integral, in general, 
cannot be written in form (1 ), and one must consider 
an arbitrary collision integral. In the present 
contribution it is }:t"oved that the formula for 
imp_edance, obtained in reference 1, is valid for an 
arbitrary collision integral . Let us note that the 
left-hand member of (1) is not assumed to be small 
in comparison with wf (w- frequency of external 
field). 

The complete system of equations has the form: 

(2) 

(3) 

4 (z; n) lz=+oo = 0, 

n=v/v; v=Vpe:(p). (4) 
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Lere - e (of/ o E) tjJ exp (i w t) is an addition to 
the equilibriun, distribution function of distribution 
{ 0 (E); E)z) exp (iwt)- are the components of the 

electric field inside the metal; L -1 = v- 1 [ (o/ot) 
... _ ..- s t 

+ iwl J is operator of the free path lent;th (! - unit 
operator)+; E, p, v are the energy, quasi-molllentum 
and velocity of electrons. The parameter q in (4) 
characterizes reflection of electrons from the 
surface of metal (q"" 0 corresponds to diffuse and 
q "" 1 to specular reflection). Integration with 
respect to dS in (2) and below is carried out for 

p 
all n.omenta on the Fern;i surface E(p) "" E0 , 

nz2 0. 
Axis OZ coincides with the direction of internal 

normal to the surface of metal. 
Writing equation (3) separately for tjJ (z; n) and 

t/J(z;-n) and eliminating t/J(z; n) + (z; - n), we will 
obtain an equation for the function tjJ (z; n) 
""t/J(z; n)- t/J(z;•n)++, which determir:es this current 
density 

In this equation the fact that the main contribution 
to the current density in the anomalous skin effect 
comes from electrons with small n has been taken z 
into account (see references l ,2). Therefore we 
may consider that the operator L acts on functions 
whose values are taken on the curve n ""0 on the 
the Fermi surface. z 

Continuing functions E )z) and tjJ _ (z; n), as 
even functions, into the region of negative z, and 
going over to Fourier transforms, we find: 

(6) 

X \ 2n,. 0 + t~n;l>pln;-, JSP l J ) 

? • lntlw 2e2 
=---E~ (0) + - 2-('J'ii)·' c ,-7t 

OJ 

where f:.oc(t) = fEoc(z)exp(-itz)dz is the Fourier 
00 

transform of the component of the electric field 
(ex. ""x, y) . 

Analogously to what was done in references l 2 
it can be shown that the asymptotic expression f~r 
the surface impedance, in the limiting case of the 
~nomalous skin effect, is obtained by replacing the 
mtegrals in (6) by their asymptotic e*pressions for 
large t. In the process the operator L drops out. 
I11 fact, fos lar~e t, since operators L and 
U+t 2nz 2 L 2 ]- conmmte, 

{~ dx[l + ,2prll. J n., ('?) 

IJ 

Here K( <r, tJ-) - Gauss curvature of the Fermi 
surface; ex. , {} - angles of a spherical coordinate 
system in the velocity space: n =(sin tJ- cos <f!; 
sin 1} sin <f!; cos tJ- ); 

n.~ (cp) = cos 'll; ny (cp) = sin <p; 

dSP = sin;} d[} d<p 1 K (cp, -&). 

In a similar way one can calculate the asymptotic 
value of the second integral in Eq. (6). 

As a result we arrive at the following integral 

equation for f:."'(t): 

en 

·--2E~_(U)-f-(l-q)ili~B, \ lnt~ln2-r ck),(-r)d-: 
C" - j t- -'r '" 

(7) 
0 

t" + i C\rr"<u I c") (B, It) 
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where Box is the principal value of the tensor 

2rt 
8e2 ( na. (cp) nr> (cp) drp 

Ba.~ = 3 (27t1L)3 ) K (cp, r. I 2) ' 

(8) 

0 

and the axes X and Y are chosen along its 
principal axes. 

The integral equation (7) is independent of the 
form of the collision integral and, in particular, 
coincides with the equation that was obtained when 
we introduced the relaxation time "'· Therefore we 
may use immediately the results of the previous 
work 1 and write down the surface impedance Z ox in 
the limiting cases of diffuse (q = 0) and specular 
(q = l) reflections of electrons from the surface of 
the metal: 

z = R + lX =- 47tiw Ea. (0) 
a. a. a. c2 E~ (0) 

(9) 

= ~(V3 ;4~2J'• (1 + iV3); q = o. 

8 ( - r-w2 )''• • -~ 9 V3 c4Ba. (1 + 1 V3); q = 1. 

(l 0) 

Examination of the integral equation (7) shows 
that formulas (9) and (l 0) for the surface 
impedance are valid with accuracy to within a 
small numerical factor of the order of unity, for 
arbitrary linear relation between t/J(O; n , n , n ) 

X X z 
and 'P(O; n , n , - n ) on the boundary metal -

X y Z 

vacuum. 
Thus, in the region of the anomalous skin-effect 

dependence of the surface impedance upon 
frequency (Zox'"'"' w213 ), its independence of 
temperature, and relation (l 0) are all valid not 
only for arbitrary law of dispersion of electrons<= <(p), 
but also for arbitrary collision integral and any rela­

tion t/J(O; nx, ny, n) = QtjJ(O; nx, ny,- nz) at the 
boundary metal-vacuum. 

In conclusion the authors wish to avail them­
selves of this opportunity to thank I. M. Lifshitz 
for the discussion of their results. 

Anomalous skin effect occurs at high frequencies and 
low temperatures, when the mean free path of electrons 
is large compared with the depth of penetration of the 
field into metal. 

**Here use is made of the spherical symmetry of Fermi 
surface. 

+All operators operate on functions in momentum 
space. 

... +In so doing we consider that the collision operator 
has a center of symmetry. 
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T illS letter deals with some conclusions which 
can be drawn from the theoretical analysis of 

the internal Compton effect. 
In the interual Compton effect, a nucleus jumps 

froiP an excited to the ground state, with the re.­
sult that the atom is ionized and a gamma ray 
radiated. The emission of an electron and a gamma 
ray when the nucleus de-excites itself is due to 
the interaction of the electron with the nucleus 
and the electromagnetic field: i.e., it is a third 
order effect. This is presumably why the effect 
has not been observed till recently. It was in 
1953 that Rrown and Stumn 1 saw a continuous spec­
trum accompanying internal conversion. 

The internal Compton effect was analyzed in 
reference l by use of nonrelativistic perturbation 
theory, i.e., with the restriction that the energy 
difference .between the excited and ground states 
was much less than the electron rest energy. In 
the perturbation theory approach, the internal 
Compton effect is of third order and considered to 
take place in the following steps: a virtual gamma 
ray emitted by the nucleus is scattered from the 
atomic electrons and as a result a real gamma ray 
is radiated and an electron ionized. 

The initial state ( l) of the system consists of 
an excited nucleus, an electron in its ground state 
and no quanta. In the final state (2) the nucleus 
is in its ground state, the electron is in an ex­
cited (ionized) state and a gamma ray has been 
emittecl. The perturbation was taken to be the 
nonrelativistic interaction between a charged 




