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Herein is presented a calculation of the propagation of a short pulse in a semiconductor 
bounded by two hole-electron transistors, one of which ( x = 0) is positive and the other 
( x = w) has a negative bias such that a semiconducting triode system exists. The form 
of the impulse is approximated by a a-function. With the aid of Laplace transforms we ob­
tained the current in p-representation at any semiconductor section. Transforming to the 
original representation at x = w permits one to obtain the expression for the collector 
current i ( w, t) and clarifies the influence of diffusion and recombination of the nonequil­
ibrium current carriers in a semiconductor on the form of the impulse at the collector. 

1. GENERAL SOLUTION OF THE PROBLEM 

L ET us consider a semiconductor doped with a 
conducting impurity, bounrled at x = 0 (emit­

ter) and x = w (collector) by hole-electron 
transistors. No electric field exists within a 
semiconductor and the changes in the concentra­
tion of the current carriers (deficit type of con­
duction) can be specified only through two 
mechanisms: l. diffusion and 2. disturbance of 
the thermodynamic equilibrium between thermal 
creation and electron-hole pair recombinations. The 
conservation equation and the expression for the 
current have the following form: 

with given stationary boundary conditions (constant 
potentials for the hole-electron transistors), one 
obtains for 

an 1 nh 1 . onh 
_h +- divj = g--, - J = - D -a , (l) at q -. q x 

from which it follows that the concentration of de­
ficit carriers (holes) is specified by the equation 

(2) 

P.ere n 0 is the equilibrium concentration of holes; 
for equilibrium the source function g, representing 
thermal creation of electron-hole pairs in a unit 
volume, equals the numbers of recombinations, i.e., 
n 0 ! T. 

Separating the stationary solution n 8 t(x ), which 
satisfies the equation 

(3) 

(4) 

the equation 

an . n - D a~n = 0' 
Tt + -:r iJx2 

(5) 

with the boundary conditions* 

n (w, t) =0, :: (0, t) = - ~ 0 (t) (6) 

and the initial conditions 

n(x, 0)=0 with O<x-<w. (7) 

With the help of the assumption l 

n (x, t) = y (x, t) e-tl~ (8) 

Eq. (5) is transformed to a pure diffusion equation 

(9) 

with the previous boundary and initial conditions. 
Performing the Laplace transformation 2 on the 

function y ( x, t ) 

* N equals the concentration of current carriers in 
the base produced by the introduced delta impulse 

00 00 
\ 0 ,. 

- qD .) a: (0, t) dt = qN ~ 8 (t)dt = q/11. 
0 

1 E. I. Andirovich, Dokl. Akad. Nauk SSSR 86, 1085 
(1952). 

2 M. A. Lavrent'ev and B. V. Shabat, Methods of 
Function Theory of Complex Variable, GITTL, 1951. 

670 



SHOHT PULSE IN A SEMI-CONDUCTOR 671 

CX> 

y (x, t). · F(x, p) = ~ y (x, t) e-P1 dt, 
0 

we find that F ( x, p) satisfies the equation 

with the conditions 

F(w, p):=O, 
dF N 
dx (O, p) = - 75 · 

The solution to Eqs. (ll) and (12) is 

where 

Nshk(w-x) 
F(x, P) = Dk ch kw 

k= YpfD. 

(10) 

(11) 

(12) 

(13) 

(14) 

The dispersion in the concentration of non­
e quilihrium carriers, specified by a 0-current 
pulse on the emitter, can he representecl by the 
general formula 

nh (x, t) (15) 

a+foo 
e-tt-r N \ sh k (w -x) pt 

= nst (x) + 27ti D ) k ch kw e dp. 
a-joo 

Here 

nst (x) (16) 

( ( .~i1!-:f:....:n~0::.:.)..::.s.:.:h_x_(:__:w,--:-x..:..)_..:..q_D_x_c_h_x_x_) 
= n0 I+- qD.<. ch xw 

is the stationary distribution satisfying the given 
bias on the hole-electron transistors. 

The corresponding stationary component of the 
hole current is 

-
z..:..'1..::.c.:.:h_x..:._(_w_---=-x..:..) ...:+-_:~._q=D...:n:.::"...:.x ..::.s.:.:h...:x.:.:x:_ 

ist (x) = ch xw 
(17) 

At the emitter, i 81(0) == i 1 , and at the collector, 

• ( i1 + qDn0x sh xw t st W) = -'---'----'--:c--"'---­
ch xw 

2. COLLECTOR CURRENT 

The variable component of the hole current 
(deficit type of conduction) specified by a 
0-impulse on the emitter equals 

. ( t) Dan (X, t) 

(18) 

t x, = -q a.x 
(19) 

=- qDe-tt-r ay (x, t) 
ax 

Transforminp; to the p-representation we obtain from 
E qs. (13) and (19) that 

_ D oy (x, t) _: <I> ( ) 
q a.x :- x, P 

(20) 

==-qDdF = qNchk(w-x) 
dx ch kw · 

'1eturning to the original representation for Eq. 
(20) and inserting it into (19), one obtains the ex­
pression for the ~urrent* at any section x. At the 
collector, i.e., at x == w, 

• qN 
e1'"' i (w, t) =<I> (w, p) = --. • chkw 

(21) 

Fxpressing <ll ( w, p) by an exponential series3 , we 
have 

CX> 

<I> (w, p) = 2 ~ (- tt+le- (2n-1) lnv 
(22) 

n=l 

* i ( x, t) is the excess over the stationary current 
i st ( x, t) and corresponds to the given boundary con­

ditions. 

3 I. ~!. Hphik and T. C. Gradshtein, Tables of 
Integrals, Sums, Series and Products, GITTL, 1951. 
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and transforming each term of (22) to the original 
representation 4 we obtain the series 

(23) 

n=l 

which represents the collector current in general 
form. Pere ,_ 

(24) 

io = 2qN I y;e, e = w2 f4D. 

We approximate the collector current, in series 
(23), by the 5-sum, 

s 

(25) 

= ~ -3/2 e-'-'~ ~ (- I )n+I (2n- I) e-(2n-I)'/~, 
n~I 

and evaluate the region of validity and degree of 
accuracy of this approximation. It is evident that 

(26) 

co 

= ~-"l•e-'-'~ ~ ( _ I )n+1 (2n _ I) e-(2n-I)'/I!. 

With 

n=s+I 

2s + 3 
~<8(s+ I)/ln 2s+i (27) 

the remaining term, P s ( ~), is an alternating series 
whose terms decrease monotonically with i ncreas­
ing n. Consequently, 

4 V. A. Ditkin and P. I. Kuznetsov, Handbook of 
Operational Calculus, GITTL, 1951. 

and, for I ( ~) one can write upper and lower 
limits, 

18 (~)<I(~)< ls+l (~). if s is even, (29) 

Is(~)> I(~)> IsH(~), if s is odd. 

To determine the accuracy of the approximation we 
consider 

11,+1 (;)-Is(;) I 
1 a(~) 

(30) 

(2s + 1) e- (2s+IJ'/I! 
- s ~e, 
~ (-1)n+I (2n -i) e--<2n-l)'/e 

n-1 

from which we can determine the time interval e 
during which the collector current can be repre­
sented by I 8 (~)with an accuracy L Here we must 

require that 

, 2s +3. 
~ <8(s+ I)/ln~s+i' (31) 

otherwise the duration of the determined interval 
is not ~-but the right-hand side of the previous 
inequality. 

We shall show that specification of the collec­
tor current for any value of the lifetime 7 by a 
three term formula, I 3 ( 0, is sufficient; in the 
given cases it was possible to restrict onself to 
approximations with two and, in some cases, with 
one term of the series (23). 

3. CASE OF LARGE LIFETIMES FOR THE NON­
EQUILffiRIUM CURRENT CARRIERS 

Let us consider the case A-2 -> 0, or corres­
pondingly, 4 D 7/ w 2 -> oo. In Fig. l we ha:ve shown 
the curves r;, r;: and I"; which are one, two, and 

three term approximations [see Eq. (23)] to the 
collector current /"0 • 

The superscript oo indicates that these solutions 
represent currents obtained in the absence of re­
combination ( 7"' oo ). The maxima of alll three 
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approximations are identical and occur at the 
value ~ = 0.67. The value of /"';' falls to half 
maximum at ~1 = 2.1; /';and r; at the value ~2.3 

= 2. From Fig. 1 and Eq. (30) it is seen that the 
first term of the series (23) approximates the 
collector current with an accuracy of t: = 0.01 
down to ~ = 1.4; the first two terms down to 
~= 3.7; the first three terms down to ~ = 6.1. 
For /"';', condition (27) is satisfied up to ~ = 3 .1, 
i.e., no additional restriction is imposed. At 
~ = 6 the value of the current is 26 times smaller 
than the maximum. Consequently, the three term 
formula /';'( ~) gives a sufficiently accurate ex­

pression for the collector current over the total 
range. The two term formula I';(~) is a satis-

factory representation of i ( w, t) for values of the 
time less than the time of maximum. In those 
cases, when the problem is confined to the half­
maximum of the curve i( w, t ), i.e.,to times for 
which the current, after passing through its maxi­
mum value, has decreased by no more than a fac­
tor of two, then the value of the collector cur­
rent agrees with /"';' ( ~) to within 5%. 

For greater times, the actual curve should be 
approximated by a larger numher of terms of the 
series (23) since, with~» 1, i.e., for t»w2 /4D, 
the series (23) converges slowly. According to 
Tauber's theorem5 the form of the asymptotic solu-

tion as ~-> oo can be obtained from the series ex­
pansion of ¢ ( w, p) in powers of kw, 

5 I. M. Ryzhik and I. C. Gradshtein, loc. cit. 

t."" v'if6~z I .. 
1/ 

-------
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2 9 fOE, 

FIG. 1 

( ~2W2) 
(f) ('W, p) IP-0 = qNj 1 + -2- . (32) . 

Transforming this equation to the original repre­
sentation, we find 

(33) 

Equation (33) is shown in Fig. 1 beginning at 
~ = 6. For all larger g, the asymptotic expression 
(33) approximates r ( 0 from above, since in the 
transition to the asymptotic representation (32), 
positive terms were truncated in the denominator. 
Consequently, for later times, when r;< ~)does not 
give a good approximation to the actual current, 
[

00 
( ~) is bounder! between the axis and the ex­

ponential (33). In Fig. 1, r ( ~) is shown in this 
region as a clashed curve. 

We shall write the final formula in different 
variables. With relative accuracy to t: = 0.01, we 
have 

~· i (w, t) = q. w (e-w'f4Dt v rtlJt3 

(34) 

- 3e-9w'f4Dt + Se-25w1f4Dt) 

with t < 1.52 w 2/D. Up tot= 0.93w 2/D one can, 
with th-;; same degree of accuracy, use the first 
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two terms, and, to t = 0.35 w 2 ID, the first term. 
Indeed, this last gross approximation permits one 
to obtain the major part of the current impulse on 
the collector, up to the point where the curve has 
fallen to approximately half its maximum value. 

4. CASE OF MODERATE AND SMALL LIFETIMES 

In those cases in which it is not permissible to 
disregard the recombination of carriers, one ob­
tains for the collector current, 

(35) 

where Ioo ( ~) is the value of the collector current 
with T= oo and is given by the series expression 
on the right in (23). Inasmuch as the evaluation 

of the values of ~,is independent of A, the re­
sults are correct for any value of T. But, because 

of the exponential factor in (35), i.e., e-A2 \ I ( ~) 
falls faster for the same value of ~ The three 
term approximation r; ( ~), which was accurate to 

f = 0.01, was goo<l for ~' s up to the point where the 
current is 1/26 its peak value; here, however, 
for A = 1 ( T = w 2 I 4D ), the current in the same 
interval, ~5- 6.1, falls to 1/1000 its peak value. 
The same situation holds for the other approxima­
tions; the smaller the recombination time, the 
more complete the expression for the collector 
current. Thus it follows that the approximate 
expressions for the collector current derived above, 
i.e., I 3 ( ~), I 2 ( ~), I 1 (~),hold to the same ac-

curacy for any value of T. 

To find the magnitude and location of the peak 
current for the general case A I= 0 one can use the 
condition resulting from (35) that 

(36) 

From (36) it is seen that the recombination process 
hastens the occurrence of the maximum current 
at the collector, since we have, with A =I= 0 

In the vicinity of the maximnm 

(17) 

Consequently, 

(38) 

Likewise, 

I max = ~;;~2 exp {- 1.2~ma:x:} exp {- 1/~ma:x:}· (39) 

The asymptotic expression for I ( ~) for large 
times is, for T=/:. 0, · 

(40) 

Curve II in Fig. 1 represents the time history 
of the collector current for A= 1, i.e., for T 

= w 2 I 4D. As was mentioned above, in this case 
the current does notfall from its peak value in the 
interval t < 1.52 w 2 by a factor of 26 as for A= 0 - D 
(curve /), but by a factor of 1000. At t = 0.93 w 21D 
the current has decreased to 1/14 its peak value. 
Gmsequently, for moderate values of the lifetimes 
(A ::- l), the two term formula I 2 fully serves as a 
sufficient approximation to the collector current. 

For small T(A > 1), the current, over its entire 
range, for all practical purposes is given by 

Thus, for example, with A= 2 the collector current 
at~= 1.4, where the approximation given by (41) is 
accurate to 1%, is 1/25 its peak value (curve 
Ill in Fig. 1 ). 

Curves I, II anct III in Fig. 1 demonstrate the 
dependence of the fcrm of the impulse at the col­
lector on the lifetime of the nonequilibrium cur­
rent carriers in a seTPiconductor. 

5. THE INFLUENCE OF BOUNDARY CONDITIONS 
ON THE ELECTRON PROCESSES IN THE VOLUME OF 

A SEMICONDUCTOR 

To clarify the influence of boundaries we shall 
compare the results obtained above with the re­
sults for the propagation of a 0-impulse in a semi­
infinite semiconductor ( 0.:5 x.::;. w ). The mathe­
matical formulation of the problem differs from the 
precerling only in the fact that the condition 
n '~ 0 occurs not at x = w but at x = oo. For this 
cao;e, the concentration and current of none'lllil­
ibrium carriers have the following representation 
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(42) 

e''"i* (x, t). ·<I>* (x, p) = q Ne-"-~. 

Comparing these with the corresponding repre­
sentations for a semiconducting layer of thick­
ness w [Eqs. (13) and (20)] we see that the two 
agree when k » (w- x)- 1, i.e., when 

(43) 

Thus as p ... oo, t-> 0, which indicates that for all 
x < w the diffusion process proceeds from the start 
the same in a semi-infinite semiconductor as in 
a bounded semiconductor. Depart•<res occur 
when t ::- t 0 , corresponding to p = D ( w- x )-2 , 

i.e., that much earlier the smaller the separation 
( w- x ). The inequality (43) in<licates that at the 
collector ( x = w ), the process differs from that in 
a semi-infinte semiconductor right from the 
beginning (i.e., at t = 0, corresponding to the 
establishment of a 0-impulse on the emitter). In 
particular, [consider F q. (21)], 

<D (w, p) lp-oo = 2qNe-kw = 2<1>* (ur, p), (44) 

f(E,) 

0.1 

z J 

i.e., at the beginning of the process, the collector 
current is twice the current which would be ob­
tained at the distance w from the emitter in a semi­
infinite medium. The reason for this is the ab­
sence of a partial counter current of deficit car­
riers which is specified by the assigned potential 
on the collector. Associated with the mainten­
ance of a small constant concentraion of deficit car­
riers, n ( w, t) :::_- 0, is a faster diffusion rate which 
involves a more rapid deere ase of current, so that 
as t -> oo, the collector current becomes much 
smaller than the current at x = w in a semi-
infinite conductor. In Fig. 2, the currents i ( w t) 
and i* ( w, t) for T = oo are represented, corres-' 
ponding respectively to the bounded and semi­
infinite case. The given potential which speci­
fies n ( w, t) ::::' 0 not only doubles the maximum and 
sharpens it but, in addition, introduces a sharper 
decrease for later times. Instead of the current 
falling off like t-31:! (for t » w 2 / 4D) 

i* (w, t) == wN e-w"f4Dt ~ const 
2 Y n:Dta t"la ' (45) 

as in a semi-infinite semiconductor, the current 
behaves· exponentially 

(46) 

Figure 2 illustrates these effects. 

---------
5 6 I 

FIG. 2 

We note that the recombination of non­
equilibrium current carriers also produce a change 
in the time dependence through the exponential 

f t -t/Tf l · (' -t/1" d ac or e or ate times 1. e., e pre ominates 
- 312) L'k . I . . f I over t . 1 ew1se, t 1e mam portwn o t 1e 
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impulse is decreasen ( i.~, the value of i ). 
max 

Within the volume of the semiconductor the 
same.effects as at the collector are realized 
( Le., greater currents at first and a greater de­
crease near the tail of the passing impulse) but 
they are smaller in magnitude the greater the dis­

tance from the collector and begin to be noticed 
only at large intervals of time after the onset of 
the diffusion process. 

Correct to a constant factor, Eq. (23) repre­
sents the transient characteristics 6 of a semi­
conducting triode 

6 V. P. Siforov, Radio Principles, p. 58, 1954. 

g(~) = t!!!J!J. = 2_ J(~) . 
df. Vn (47) 

We note further that the influence of finite life­
time on the electronic processes in a semi­
conductinf. layer is represented by a muitiplic ative 
factor e·t T only for a 0-impulse. For other kinds 
of signal shapes, assumption (8) implies that T 

appears in the second boundary condition of (6), 
and consequently the diffusion and recombination 
process cannot be separated. 

Translated by A. Skumanich 
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