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The thermoelectromotive force, resistance and Hall effect are considered on the basis
of a two band model for a metal in a magnetic field at low temperatures.

HE kinetic energy of electrons in a magnetic
field, in a plane perpendicular to the direction
of H, is quantized1 . This holds both for free

electrons and for electrons in a metal®™*,

independently of their dispersion law®. Because
of the quantization of the energy, all the physical
quantities that depend on the distribution of the
electrons in the quantized levels, will oscillate
upon a change in H. The oscillation of the
magnetic susceptibility has been studied in
greatest detail >~%; however, a study of the
behavior of other physical quantities (resistance,
Hall effect, thermal emf, etc.) upon variation of H
is of interest for the electron theory of metals. It
was pointed out by Akhiezer®, on the basis of the
research work of Titeical %, that the resistance of
netals (in accord with published experiments!!+12)
nust oscillate upon variation of the magnetic

field. Blokhintsev and Nordheim! 3 investigated
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the increase of resistance in a magnetic field.
Davydov and Pomeranchuk!#, making use of the
particular case of a two band model for bismuth,
showed that, along with the oscillations, there was
observed an unlimited increase in the resistance
of bismuth in a magnetic field. Their expressions
applied only to bismuth, and in view of their
complicated character, were unsuitable for
comparison with experiment. Kohler! ® obtained a
simple expression for the resistance in a magnetic
field, but he did not take into account the
quantization of the energy of the electrons.

In the present research, we have considered the
behavior of the resistance, Hall effect and thermal
emf (in the isotropic case) for a two band model
of a metal in a strong magnetic field at low
temperatures.

In place of the inequality wr < 1 (w = ell/me,
7 is the free path time for the electron in the
metal), which allows us to write down the kinetic
equation in the usual way, we shall assume the
inverse inequality to be valid: @7>> 1. In this
case the quantization is preserved, in spite of
collisions with the lattice.

1. EIGENFUNCTIONS AND THE ENE RGY OF
THE ELECTRONS

For free electrons in a n:agnetic field // = /
(described by the vector potential A=-H,
Ay: A, =9) and an electric field /' = Fy’ we have
the equation
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where p = efi/mc, e = absolute value of the elec-
tronic charge. The solution of this equation has
the forn
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where o = ( hc/eli)%; ¢ = Chebyshev-Hermite
functions;

Epnp, = Epn, + hekyE | H, (3)
Eupy=pH (n + ;) + B2k} 2m

We note that ick, F/H = eFy j, where y is the
equilibrium position. To the state (2) there
corresponds the current

ly=—ecF|H, {,=0. 4)

We now pass over to electrons in a lattice,
wherein we shall make use of the approximation
of strongly coupled electrons, employing the
rather simplified method of Peierls?. If p,(r) is
the eigenfucntion of the electron in an atom
located at the point n = 0, then (see reference 4)
we have for the electron in the atom at the point n
(if the magnetic field directed along the axis oz
is described by the potential Ay= llx):

@n () = exp {— ixg 11y} ¢ (r — n). )

For an electron in the periodic field of the
lattice, we have

{1 /A
m(v+%A>2¢+(V,,+er)'p=Eq». (6)

We seek the solution of this equation in the form

b = > anea (1), (7)

where the function cpn(r), which is defined by kgq.
(5), satisfies the equation

IR ®
+ [V(l‘—ﬂ) +3Fy] Pn = En'-?m

V(e — n) is the field in an isolated atom at the
point n. For the coefficients a, we get (assuming
the neighboring ¢ _ to be slightly overlapping)

c=F—£,

(Ea are the eigenvalues in the isolated atom),

e (10)

“mn

= exp {iog 2 (my — it,) no} [A(m — n) + eFnyimn)-

The exchange integral A(q) is equal to

. (11
A(Q)={2(r— ) e () [V, (r) — V(1) dr

It is not difficult to obtain the operator € from the
matrix elements (10). It has the form

S = A(q) e R+ eFy, 12)
q

where R = [f) + (e/c)Al/A (e is the absolute value
of the electronic charge), while A, = —Hy, Ay =4,=0,
and q is the lattice vector.

Writing the operator € in the form (12), we have
neglected the ngncommutability of the components
of the operator R (a = lattice constant):

aR.aRy —aRyaR, = —ia /a3, (13)

inasmuch as a2/ % <« 1, which takes place even
in very strong magnetic fields (in order that this
ratio be unity, the field must be of the order of
10%- 107 oersteds).

Since the exchange integral 4(q) increases very
rapidly with ¢, we can write Eq. ?1 2) for the cubic
lattice in the form:

S
E=A00

(14)
+ 2A, (cos aR, + cos aR, + cos aR;) + eFy.
We consider the field F small, so that the follow-

ing inequality is satisfied: eFNo oK pdl, where

N=y2n +1, Nu  is the amplitude of oscillation
of the electron. Below the upper band we can
expand in a cosine series, neglecting two terms.
Then the operator (14) is identical with the
operator (1), if we introduce the effective mass

Mets =m, = —h?[2A,a°

These operators have identical eigenfunctions*
[Eq. (2)] and, if we select the value of the energy
at k1= 0 as zero, identical eigenvalues (3).

* In the approximation of strong coupling of the
electrons, for ka << 1, the function Uk(r) inthe expression
Y =exp {ik-r} Eexp{ik- (n-r) cpo(r -n)= exp{ika r} Uk(r)
depends very weakly on k, since |r — n‘ % a, and the e-

fore the rapidly oscillating factor of U, (r) can be con-
sidered constant in the calculation of axl‘bitrary matrix
elements from functions in the region ka << 1. In

the presence of a magnetic field, Eq. (2) appears in
place of eikr,
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Above the lower band we can again expand Eq.
(14) in a series, neglecting the quadratic terms.
By means of a transformation of the eigenfunctions

[multiplication of them by expit(in/a)(x + y + 2)}]
we can reduce the problem to Eq. (1) here also.

However, the effective mass, - m,, is now given by

Mett = — My = h2[ 24,02, mesr <O.

The eigenfunctions will have the form

Drynr,
(15)

— sin w exp {i (orx + k32)}

V2 +y+z 3

cos a ( y + ) 2 VL1L3GO

y fick, Fmy c?

X Pn (u—o— T ageld aoeH~') .

Here the square of the first factor (which is
rapidly oscillating and identical for all v, nk

can be replaced by % in the calculation of 1the
matrix elements.
The energy of the electron can be written as

Eh.nk, (1 6)

1 w22 ek F
=A4,— PzH(’l+ 5)—2”_‘:4'—”1—

Here A is the overlap of the lower and upper

bands

The same current corresponds to the state (15)
and to the state (2). The same result obtains in
classical physics: the velocity of the electron
has the mean value ¢F/H in the field F = F ,
H= H and depends neither on its mass nor on its
charge The current density for all electrons in
the first (upper) band will be Jp. == (ecF/H)N1 ;
N1= number of electrons in this'zone per em3. The
current density in the second (lower) zone will be
equal to j = (ecF/H)N2 if we take it into account
that the cufrent which corresponds to a filled band
is zero. Here N2 is the number of free states in
the lower band (number of holes). The resulting
current density along the ox axis will be

je=—(ecF | H)(Ny— Ny). 17)

The overlapping of the bands A and the Fermi
level E (for H=0, T =0) are connected with the

numhers N, and N, by the relations

G. kK. ZIL’BERMAN

N; = (8w /3h3) (2”11500)',';
N, = (87 /3h3) [2my (Ay — Eoo)]™

2. THE CURRENT IN THE DIRECTION OF THE
ELECTRIC FIELD

The current in the direction of the electric field
F_ is brought about by transport of electrons
because of collisions with the lattice! 0. At the
very low temperatures of interest to us we can
consider only scattering by distortions of the
lattice.

The current I through the plane y = 0 is equal
to the number o%/ transfers across this plane per
second, multiplied by the charge on the electron:

2re ([1]3 2
Iy= h(n‘

X 0 3§ 1 Vi sme 123 (Brnb — B

k>0 %,<0 n,m kaxy

X [fu (Enny) (1 — fuo (Emx,)

(18)

- fx. (mea)

x (1= fa, (Err,))] dkld"ldkad"s.

Here Vk is the matrix element of the

1 nk?‘u1 mit
perturbation V, produced by the transfer:

Vh.nk,; u,mx—, (1 9)

exp {—i(ky—xy) x — i (kg —x3) 2}
Fme?
+ aueH”>
Fnic?®

¢ 2z hexy
X ‘P”’( a.,eH+oteH~>Vd‘

-1 S
- 4L1L3(10

v hicky
X $n (‘«: el

The argument of the distribution function f will

be En/c3 [Eq. 3)], not Ekl

fick | F/H plays the role of a potential energy in the
electric field. The inde)(kl
introduced for the case in which there is a weak
temperature gradient in the metal.

In a way similar to that used in reference 10, we
can show that the function f is identical, up to
terms of order F2, with the usual Fermi function,

provided that the temperature gradient is propor-
tional to the field F (thermo-emf). The proof is

nk. inasmuch as

of the function f is
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based on the fact that in Eq. (20) below [ as also in

(ﬂ) _ 200 1
ot coll TC?I‘ o e

X [fr, (Enny) (1 — fo, (E

the integration over %, is effectively between the

limits

-“O(M'*‘ ]V) “()(“1—'/2 )
N=V2n+1,

since the matrix element (19) differs from zero
only in this interval. The integral (20) depends on

<o (M + N), 1)
M=Vom+1,

~+oo
S dxl S dx3 | Vkl”hs; Kymrg |2 8 (Eklnh! —

nixs))

Eq. (18)],

Exlﬂms)
(20)
— fu (Emn,) (1 — fu, (Enn,))],

temperature gradient in the metal, a gradient pro-
portional to the field. We can then write
fu (22)
= fu b — k) 22 [ 5T O%n, , OEOF,
=Sk 1T MUeH oy aT‘*“EFE’
where £
In the calculation of Eq. (18) we make use of the

is the Fermi level.

the field /¥ only in the combination eF« (k - % ) ) .
but in the expansion in powers of F and 1ntegratxon smallness of the difference b"kg_ E””‘s and of the
such terms drop out, in view of the condition (21). expansion (22):
This will be true even in the case in which there is a
2red? 2 -
=B (=) § 3§ hoet
Ry >0 <0 m, 1 kyxs
X 8 (Erynpy — Exymxs) (B — 1) 0}5:;2 Ak, dx, dkgdxg
L or (23)
- T —()—_; S S 2 % 1 Vkl”ha; KM%y I2 3 (EhlnhS—Ex'”m’)(kl— xl)

By 50 %:<°0 m,n Ra%s

X (Ensy — Eo) e dbsd ds s}

To calculate the matrix element (19) which
determines the probability of elastic scattering on
distortions of the periodic potential of the lattice,
randomly located in the crystal, we assume that the
difference V between the real and ideal periodic
potential can be expressed in the form

V=", %3 —0) (24)
p

where the summation is carried out over all the
nodes where distortion takes place. We assume
such a form of V' completely if the scattering of
electrons located near the boundary of the band

is considered.

Making use of the independence of the location

of neighboring distortions, we can calculate the
matrix element of the perturbatlon and carry out the

"y after which Eq. (23)

integration over k
takes the form

%1,

o — 2% M? 4 N2 of
[,=Vin 1Laf [( 0\ S i
y oltd oc(2)67:3'}i,3‘ ())’/ 2 ]/kz - 20( 2(/1 m) ohnh 3 -
ST e T—— o £ ds]
Ty n% kS, Vit 2atn—m Oun,
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Here n, is the concentration of the distortions.

Summation over m is obtained with the aid of
Poisson’s formula and yields

G. E. ZIL’BERMAN

We substitute this in Eq. (25), sum over n and
integrate over k3, thus obtaining the final

expression for /. This expression is very

M2 4 N2 (26) cumbersome, but it becomes appreciably simpler if
; ng 22 (n —m) the following inequalities are satisfied:
_ exp {2r%kT [pH} > 1,
— 2V 2k [_2_ s/k. +P.H(IZ+ ) 1/'] 27)
Vi, (wH)? s kT 2 pH, pH/E, 1,
Vim0 (29, n) KT [E, L1
Vim (wH)'ls Z Vznrq ( wH & These conditions are usually satisfied in the
theory of diamagnetism at low temperatures.
1 For the current den51ty in the direction OY we
X (Eﬂka + o H (n + 7)) get, for electrons in the lower levels of the upper
band:
. 1C 9L\ [ 8 40mV Z ATE
Jy, = {(eF—I— °) [~3—E§+O,6y1HE°— ”3 Va :1 e—"cos (81—'%)'!'---]
1
16 40m VH gy, — , L
+ BT 5[ S By + il — 2= P Eve™"(1 — 1) sin(e,—7) +...j}; (28)
2¢2 2n*kT 2rE, |
C=Vind sogms 0= "pm> = (29)
and for the electrons in the upper part of the lower band:
. ‘C IENT 8 R
jy.= ( F+ )[—3- (Ao —Eo) + O’GPZH (AD - EO)
4002 V2 kT (A —E)r _ 1) _
——3 Vi e—Y1cos (82 % +.. ]
oT[16 2
— BT L[5 (Ae— o) + 5 v —
- 40m V-y. H . —Ys 1 — ( 1) . .
~ vy e e E) e (L —ma)sin (& — ) 4 3k (30)
Yo = 25T [poH, o= 25 (Ao — Ey) [ pH. (31)

3. THERMOELECTRIC FIELD

The theory of the thermal emf in a magnetic field,
based on the kinetic equation1 5. shows that, upon
unbounded increase in /, the longitudinal electric
field (in the direction of the temperature gradient)
becomes significantly greater than the transverse
(their ratio is of the order of w 7). We make the
assumption that this conclusion is qualitatively
correct in the case of interesttous: o 7> 1,
although the kinetic equation, strictly speaking,

is valid only for @< 1. An independent argument
in favor of our assumption is the fact that a thermo-
electric field exists in the longitudinal direction,
even in the absence of a magnetic field, while,
under such conditions, there is no such field in the
transverse direction. Moreover, the change of
thermal emf is always small in a magnetic field
(experiments have not yet been carried out at low
temperatures).

If our assumption is correct, we can obtain the
thermoelectric field F by making use of Egs. (28)
and (30), and the equation
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Jy 1y, =0

In this case the H~2 in front of Eqs. (28) and (30)

drops out, as a result of which the terms which

increase rapidly with field are absent in the
thermal emf case, in contradistinction to the cases
of resistance and the Hall coefficient. If the above
mentioned assumption is not correct, then such
terms can appear in the thermal emf. We get

0E, 2 0T T2h2T?2 4 4
efF =——+——— — Ey— —
oy 30y MU ER 4 md (Ao — Eo)? {ml o — My (Ao — £)
9 15 miVu HE]
g0 (mHmt — pHmd) + =2 e (1 — ) sin (a1 — ) (32)
15 m‘l H (A — Ey)’ls 1
VT BT e Y1 (1l —,)sin (82— 7[) +.. } .
In the single band model we have
. 0F z_a_@_1_[ _9pH 15 VeFE ., (__1> ]
P =3 uEm "0 g Toyy ¢ TOsmET )]
0By _ 0FdT __ , OT __n_z_g I _, ( _i) ]
5y = oT 9y = k@[ +='s(1 1)[/——6 sin{e —— ) +-
Thus the thermal emf must oscillate upon change of H,
like the other physical quantities. The oscillating term 7
has the factor \/pHE (/kT, of the same order of magni- /.9
tude as the correspondmg term (v/, pHE, kT Y T/ ‘,_{1)2 e
in the expression for the magnetic susceptlbxllty /
4. RESISTANCE IN A TRANSVERSE MAGNETIC (7
FIELD AND THE HALL EFFECT d .
The relative positions of the components of the J
. . . . X
cwrrent and field in the specimen are shown in
Fig. 1. Inthe absence of a temperature gradient, \
the entire current is directed along the rf axis. z
The re51stance in the magnetic field is Fic. 1
Py= f/]_(] /iYF, where]y—]y +]y . Making ’
use of Eqs. (3B), (30) we obtain The ratio F_ /F , introduced by Borovik! Zas a
_ CH2(f1 + f2) characteristic of the Hall effect at low tempera-
P = o&he (N1 == No)* + ¢C: (f1 + fo)?° (33) tures, is equal to
where 3
Fop Jx _ —H(MNM—N) (35)
9 —_— e T T .
fl___E2 4(1_'_40["’; FE Jy C(Hi+ 1)
(34)
Equations (33) and (34) ate_in conformity with
— 5n2 ]/2 e~ COS( — _“.) +.. ) the classification of metals™ “ according to the
Vlh 4 type of dependence of the resistance and the Hall

and f, is obtained from f, by replacing m; by m,
and E,by A -E . Equation (33) is vahd only
for wr >> 1 (in strong fields). For N, =N,, py
increases proportionally to H?, whlle for N ;é N
saturation is observed.

field on the direction of the magnetic field. If

N ;‘— N the resistance increases up to saturation
:md the Hdll field is proportional to /1. N, =N, the
resistance increases in proportion to H? , and the
Hall field is very small. Itfollows from Eq. (35) that

in this case F_n= 0; this is dependent on our
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approximation (in the expression for the current
J» there must appear terms of much higher order
relative to (w'r)'1 , which leads to a decrease of
F_ in strong fields; this has also been
observed! 2).

The oscillations of the resistance and the Hall
field must differ in phase by #; this has been
observed in the experirents of Jorovik! 2. The
niobility of the electrons enters onlv into the
current j_; therefore, if the resistance decreases
under external pressure (as a consequence of the
increase in the exchange integral 4 and,
consequently, the decrease of the effective mass
m), then the Hall field must increase. This has
also been observed by Alekseevskii ana Brandt!®,

The expression (28) for the current density (for
dT/dy = 0) can be written in the form

Jy=0F (07)72, (36)
which follows from the theory of Kohler! ® for

w7 > 1. In such a case, if we assune o = e’nr/m,
we can estimate the mean free time of the
electrons. If we keep in Kq. (28) only the
principal term (8/3)E% , we get

16 N. E. Aleksecevskii and N. G. Brandt, Proceedings
of the Conference on Low temperature Magnetism,

Kharkov, 1954.
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1/== Ving2m YV 2mE, | 3xht. 37)

while for the mean free path we get

L/L=(1/0)Vm[2E,=2Ving m*|3=ht, (38)

and 1/l , as always, in scattering on impurities or
distortions, is proportional to the concentration of
the impurities and does not depend on the
concentration of electrons.

If we also keep all the other terms in Kq. (28),
then the free time of the electrons on the Fermi
surface oscillates upon change of the magnetic

field:

t_2Vingm om0 9 uH (39)
== gm Vembo (It 5

— 5n? VQ_VI;—ITIO e cos (s — 1—2—) +.. )

Here we assume E _ to be a constant quantity,
since the corrections will be of a higher order of
smallness than the terms considered.

The author takes this occasion to express his
thanks to Frofessor I. M. Lifshitz for his dis-
cussions of the work.

Translated by R. T. Beyer
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