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The thermoelectromot ive force, resistance and Hall effect are considered on the basis 
of a two band model for a metal in a magnetic field at low temperatures. 

T l:lE kinetic energy of electrons in a magnetic 
field, in a plane perpendicular to the direction 

of H , is quantized 1 • This holds both for free 
electrons and for electrons in a metal 2 - 4 , 

independently of their dispersion law 5 • lJecause 
of the quantization of the energy, all the physical 
quantities that depend on the distribution of the 
electrons in the quantized levels, will oscillate 
upon a change in H. The oscillation of the 
magnetic suscer.tibility has been studied in 
greatest detail 5 " 9 ; however, a study of the 
behavior of other physical quantities (resistance, 
Hall effect, thermal emf, etc.) upon variation of H 
is of interest for the electron theory of metals. It 
was pointed out by Akhiezer 6 , on the basis of the 
research work of Titeica 1 0 , that the resistance of 
n,etals (in accord with published experiments 1 1 ' 1 2) 

must oscillate upon variation of the magnetic 

field. JJ!okhintsev and Nordneim 1 3 investigated 
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the increase of resistance in a magnetic field. 

Davydov and Pomeranchuk 1 4 , making use of the 
particular case of a h~o hand model for bismuth, 
showed that, along with the oscillations, there was 
observed an unlimited increase in the resistance 
of bisn;uth in a magnetic field. Their expressions 
applied only to bismuth, and in view of their 
complicated character, were unsuitable for 
comparison with experiment. Kohler 1 5 obtained a 
simple expression for the resistance in a magnetic 
field, but he did not take into account the 
quantization of the energy of the electrons. 

In the present research, we have considered the 
behavior of the resistance, Hall effect and thermal 
emf (in the isotropic case) for a two band model 
of a metal in a strong magnetic field at low 
temperatures. 

In place of the inequality wr « l (w '=ell/me, 
r is the free path time for the electron in the 
metal}, which allows us to write down the kinetic 
equation in the usual way, we shall assume the 
inverse inequality to be valid: wr » l. In this 
case the quantization is preserved, in spite of 
collisions with the lattice. 

1. EIGENFUNCTIONS AND THE ENERGY OF 
THE ELECTRONS 

For free electrons in a n:agnetic field H = ll z 

(descriLed uy the vector potential Ax=-- H y, 

A =A = 0) and an electric field F = F , we have y z y 
the equation 

o7/',! 1;_2 A 1 .. n::J = --u·~ ' 2m r 
(l} 

\vhere i< =en/me, e =absolute value of the elec­
tronic citarf;e. The solution of this equation has 
the forn, 

(2) 
<'XP (i(l,>1x+ /?3z)} ( y 1tek1 + Fmc2 )' cpn ---- ---2 ' 

2 V L1Larx.o , rx.o rx.0eH rx.0eH 

1 4 B. I. Davydov and I. I a. Pomeranchuk, .J. Exper. 
Theoret. Phys. USSH 9,1 295 (1939) 

1 5 i\1. Kohler, Ann. Physik 6, 18 (1949) 
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where ex 0 = ( "hc/eJi)'lz; lf!n =Chebyshev-Hermite 

functions; 

\\'e note that 1ick 1 F /ll = eFy 0 , where y 0 is the 
equilibrium position. To the state (2) there 
corresponds the current 

i.~ = - ecF I H, iy = 0. 

(3) 

(4) 

We now pass over to electrons in a lattice, 
where in we shall make use of the approximation 
of strongly coupled electrons, employing the 
rather simplified method of Peierls 2 • If cp 0 (r) is 
the eigenfucntion of the electron in an atom 
located at the point n = 0, then (see reference 4) 
we have for the electron in the atom at the point n 
(if the magnetic field directed along the axis oz 
is described by the potential Ay= llx): 

lfn (r) = exp {- iocij2n1y} r.p0 (r- n). (5) 

For an electron in the periodic field of the 
lattice, we have 

(6) 

We seek the solution of this equation in the form 

~ = ~ ani.Pn (r), (7) 
n 

where the function cpn(r), which is defined by E:q. 
(5), satisfies the equation 

1 r~ e )2 
'2m \P+c A !.pn 

(8) 

+ [ V (r- n) + eFy] <pn = En'fn• 

V(r - n) is the field in an isolated atom at the 
point n. For the coefficients an we get (assuming 
the neighboring cpn to be slightly overlapping) 

eam = ~ GnZmn; 
n 

s= E-Ea 

(£a are the eigenvalues in the isolated atom), 

(9) 

(l 0) 

The exchange integral A (q) is equal to 

• (ll) 
A ( q) = ~ fo ( r - q) Cfo ( r) [ V p ( r) - V ( r)] d -r. 

It is not difficult to obtain the operator E from the 
matrix elements (l 0). It has the form 

~=~A (q) e-iqR + eFy, (12) 
q 

where R = [p + ( e/c)A)/h (e is the absolute value 
of the electronic charge), while Ax= -H , A =A = 0, y y z 
and q is the lattice vector. 

Writing the operator E in the form (12), we have 
neglected the n~ncommutability of the components 
of the operator R (a = lattice constant): 

aRxaRy - aRyaR.~ = - ia2 j oc5, (13) 

. h 2 2 masmuc as a /ex 0 « l, which takes place even 

in very strong magnetic fields (in order that this 
ratio be unity, the field must he of the order of 

108 - 109 oersteds). 
S.ince t?e exchange int~gral, A (q) increases very 

rapidly w1th q, we can wnte l!.:q. (12) for the cubic 
lattice in the form: 

; = Aoo (14) 

We consider the field F small, so that the follow­

ing inequality is satisfied: eF N ex 0 « pll, where 

N = y2n + l, ,V v. 0 is the amplitude of oscillation 
of the electron. Below the upper band we can 
e~pand in a cosine series, neglecting two terms. 
1 hen the operator (14) is identical with the 
operator (1 ), if we introduce the effective mass 

These operators have identical eigenfunctions* 
[l!.:q. (2)) and, if we select the value of the energy 
at k 1 = 0 as zero, identical eigenvalues (3). 

* In the approximation of strong coupling of the 

electrons, for ka « l, the function U k(r) in the expression 

tj; = exp {ik· rl ~exp{ik· (n- r) cp 0 (r - n) = exp{ iko rl [! k(r) 
depends very weakly on k, since I r- nl '<::a, and the.e­

fore the rapidly oscillating factor of U (r) can be con­
sidered constant in the calculation of al'bitrary matrix 
elements from functions in the region ka << 1 . In 
the presen~e of a magnetic field, Eq. (2) appears in 
place of e tltr. 
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Above the lower band we can again expand Eq. 
(14) in a series, neglecting the quadratic terms. 
Dy means of a transformation of the eigenfunctions 

[multiplication of them by exp{±(irr/a)(x + y + z)IJ 
we can reduce the problem to Eq. (l) here also. 
However, the effective mass, - m2 , is now given by 

me£! =- m2 = 1i2 I 2A2a2 , me££ < 0. 

The eigenfunctions will have the form 

(15) 

= V2 sin ..2::.. (x + Y + z) exp {i (klx + kaz)} 
cos a 2 Y LILarxo 

X tfin (L _ 1ick 1 _ Fm2 c2 ) 

rxo rx0eli rx0eHJ , 

Here the square of the first factor (which is 
rapidly oscillating and identical for all t/1 k nk ) 

can be replaced by~ in the calculation of \he 3 

matrix elements. 
The energy of the electron can be written as 

Here A 0 is the overlap of the lower and upper 
bands. 

(16) 

The same current corresponds to the state (15) 
and to the state (2). The same result obtains in 
classical physics: the velocity of the electron 
has the mean value cF /H in the field F = F 
H =Hz and depends neither on its mass no/o'n its 
charge. The current density for all electrons in 
the first (upper) band will be j x =- (ecF /H)N 1 ; 

N 1 =number of electrons in this1 zone per cm 3 • The 
current density in the second (lower) zone will be 
equal to j x = (ecF /H) N 2 if we take it into account 
that the cuftent which corresponds to a filled band 
is zero. Here N 2 is the number of free states in 
the lower band (number of holes). The resulting 
current density along the ox axis will be 

(17) 

The overlapping of the bands A 0 and the Fermi 
level E (for H = 0, T = 0) are connected with the 

0 
numbers N 1 and N 2 by the relations 

N 1 = (87t I 3h3) (2mtEoo)'\ 

N 2 = (87t / 3h3) [2m2 (A 0 -- E00 )]'1•. 

2. THE CURRENf IN THE DIRECTION OF THE 
ELECTIDC FIELD 

The current in the direction of the electric field 
F is brought about by transport of electrons 
blcause of collisions with the lattice 1 0 • At the 
very low temperatures of interest to us we can 
consider only scattering by distortions of the 
lattice. 

The current I through the plane y = 0 is equal 
to the number of transfers across this plane per 
second, multiplied by the charge on the electron: 

J _ 2rre (/1/a 2 (18) 
y- t 7t2 ) 

X ~ ~ ~ ~ I v k,nk,; x,mx.l2 a (EI<,nka- Ex,mx,) 
k,>o x,<o n,m k,x, 

X [fk, (Enh,) (1- /x, (EmxJ)- fx, (Emx,) 

X 

Here V.k k ~ v is the matrix element of the 
1 n 3 "'1 m'"3 

perturbation V, produced by the transfer: 

(19) 

X 

The argument of the distribution function f will 
beE k [Eq. (3)], not Ek k , inasmuch as 

n 3 1 n 3 

lick 1 FIll plays the role of a potential energy in the 
electric field. The index k 1 of the function f is 
introduced for the case in which there is a weak 
temperature gradient in the metal. 

In a way similar to that used in reference 1 0, we 
can show that the function f is identical, up to 
terms of order F 2 , with the usual Fermi function, 
provided that the temperature gradient is propor­
tional to the field F (thermo-emf). The proof is 
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based on the fact that in Eq. (20) below [ as also in Eq. (18)], 

(20) 
X [f,,, (En,.,) ( 1 - f><, (En,><.))- f><, (Emh,) ( 1 - /k, (Enk,))], 

the integration over x 1 is effectively between the 
limits 

- OC0 (M + N) ~ oc~ (x1 - k1) ~ oc0 (M + N), (21) 

N = V 2n -t- 1, M = V 2m + 1, 

since the matrix element (19) differs from zero 
only in this interval. The integral (20) depends on 
the field F only in the combination eF a.. ~(k 1 - x 1 ), 

hut in the expansion in powers of F and integration, 
such tern,s drop out, in view of the condition (21 ). 
This will be true even in the case in which there is a 

To calculate the matdx element (19) which 
determines the probability of elastic scattering on 
distortions of the periodic potential of the lattice, 
randomly located in the crystal, we assume that the 
difference V between the real and ideal periodic 
potential can be expressed in the form 

V= V0 ~o(r-p), (24) 
p 

temperature gradient in the metal, a gradient pro­
portional to the field. We can then write 

where E 0 is the Fermi level. 
In the calculation of Eq. (18) we make use of the 

smallness of the difference E k - E v and of the 
n 3 m,. 3 

expansion (22): 

(23) 

where the summation is carried out over all the 
nodes where distortion takes place. We assume 
such a form of V completely if the scattering of 
electrons located near the boundary of the Land 
is considered. 

Making use of the independence of the location 
of neighboring distortions, we can calculate the 
matrix element of the perturbation and carry out the 

integration over k 1 , x 1 , x3 , after which Eq. (23) 
takes the form 

(25) 
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Here nd is the concentration of the distortions. 
Summation over m is obtained with the aid of 
Poisson's formula and yields 

M2+N2 

~ V"i+2(X02 (n-m) 
(26) 

2c2 

C = vgn d 37taet7 ; 

and for the electrons in the upper part of the lower 

We substitute this in Eq. (25), sum over n and 
integrate over k 3 , thus obtaining the final 

expression for I . This expression is very 
cumbersome, huf it becomes appreciably simpler if 
the following inequalities are satisfied: 

exp {2'1t2kT I p.H} ~I, 

kT ..e p.H, p.H /Eo~ I, 
(27) 

kT /Eo~ 1. 
These conditions are usually satisfied in the 
theory of diamagnetism at low temperatures. 

For the current density in the direction OY we 
get, for electrons in the lower levels of the upper 
hand: 

(29) 

hand: 

jy. = m2: {(eF + 0:;) [ ~ (A 0 - E 0) 2 + 0,6p.2H (Ao- Eo) 

_ 407t2 V2- kT (A 0 - Eo)•r. e-Y. cos (s2 _ 2.:.) + ... ] _ 
3 v lhli 4 

iJT [ 1 ~7t2 7t2 
- k2T oy .-9- (Ao- Eo)+ 5 't'-2H-

·-- 407t_ V[i:;R(Ao-Eo)•t.e-Y'(l-r2)sin (s2- 7t4) +· .. J}; 
3 J/2 kT (30) 

3. THEil.MOELECTIUC FIELD 

The theory of the thermal emf in a magnetic field, 

based on the kinetic equation 1 5 , shows that, upon 
unbounded increase in H, the longitudinal electric 
field (in the direction of the temperature gradient) 
becomes significantly greater than the transverse 
(their ratio is of the order of w" ). We make the 
assumption that this conclusion is qualitatively 
correct in the case of interest to us: w" » 1, 
although the kinetic equation, strictly speaking, 

(31) 

is valid only for w-;< 1 . An independent argument 
in favor of our assumption is the fact that a thermo­
electric field exists in the longitudinal direction, 
even in the absence of a magnetic field, while, 
under such conditions, there is no such field in the 
transverse direction. Moreover, the change of 
thermal emf is always small in a magnetic field 
(experiments have not yet been carried out at low 
temperatures). 

If our assumption is correct, we can obtain the 
thermoelectric field F by making use of Eqs. (28) 
and (30), and the equation 
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In this case the Fr 2 in front of Eqs. (28) and (30) 
drops out, as a result of which the terms which 

In the single band model we have 

Thus the thermal emf must oscillate upon change of H, 
like the other physjcal quantities. The oscillating term 
has the factor y pRE ofkT, of the same order of magni­
tude as the correspondmg term ( y pH E 0 I k T) (k T I pli) 2 

in the expression foc the magnetic susceptibility. 
4. RESISTANCE IN A TRANSVERSE MAGNETIC 

FIELD AND THE HALL EFFECT 

The relative positions of the components of the 
current and field in the specimen are shown in 
Fig. l. In the absence of a temperature gradient, 
the entire current is directed along the g axis. 

The resistance in the magnetic field is 
pH= F ~/j = (i/i2)F, where iy = iy 1 + iy2. Making 

use of Eqs. (~), (30) we obtain 

ern (ft -1- r.) 

where 

(34) 

and f 2 is obtained from f 1 by replacing m 1 by m2, 

and E 0 by A0.- E 0 • Equation (33) is valid only 
for wr » l (in strong fields). For N 1 = N 2 , PH 
increases proportionally to ll 2 , while for N 1 f. N 2 , 

saturation is observed. 

increase rapidly with field are absent in the 
thermal emf case, in contradistinction to the cases 
of resistance and the Hall coefficient. If the above 
mentioned assumption is not correct, then such 
terms can appear in the thermal emf. We get 

(32) 

FIG. l 

The ratio F 17 /F ~·introduced by Borovik12as a 
characteristic of the Hall effect at low tempera­
tures, is equal to 

-H(NI-N2) 

c (/1 + /2) (35) 

Equations (33) and (34) alj_e in conformity with 
the classification of metals 2 according to the 
type of dependence of the resistance and the Hall 
field on the direction of the magnetic field. If 
N 1 f. N 2 , the resistance increases up to saturation 

:md the Hall field is proportional to H. If N 1 = N 2 ,the 
resistance increases in proportion to H 2 , and the 
Hallfield is very small. ltfollows from Eq. (35) that 
in this case F-ry= 0; this is dependent on our 
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approximation (in the expression for the current 

j x' there must appear tern.s of much higher order 
relative to (wrt 1 , which leads to a decrease of 
F in strong fields; this has also been 
oL~erved 1 2 ). 

The oscillations of the resistance and the Hall 
field must differ in phase by 77; this has been 
observed in the experin·ents of Dorovik 1 2. The 
DJobility of the electrons enters onlv into the 
current j y; therefore, if the resistance decreases 
under external pressure (as a consequence of the 
increase in the exchange integral A and, 
consequently, the decrease of the effective mass 
m), then the Hall field must increase. This has 
also been observed by Alekseevskii anci JJrandt 1 6 • 

The expression (28) for the current density (for 
dT/dy = 0) can Le written in the form 

(36) 

which follows from the theory of Kohler 1 5 for 
wr >>I. In such a case, if we assullJe a= e 2 nr/m, 
we can estimate the mean free time of the 
electrons. If we keep in l<.;q. (28) only the 

principal term (8/3)£~, we get 

16 N. E. Alekseevskii and N. G. Brandt, Proceedings 
of the Conference on Low temperature Magnetism, 
Khar kov, l 954. 

(37) 

while for the mean free path we get 

and I /l , as always, in scattering on impurities or 
distortions, is proportional to the concentration of 
the impurities and does not depend on the 
concentration of electrons. 

If we also keep all the other terms in Eq. (28), 
then the free time of the electrons on the Fermi 
surface oscillates upon change of the ma:snetic 
field: 

..!._ = 2V~nu m 1/2 E ( 1 + i [LH (39) 
-r ihti:' r m 0 \ 40 1:;'0 

V-- kT (' 1t) ) - 61t2 2 V . e-Y cos s - 4 + ... 
[LhEo 

Here we assume E 0 to be a constant quantity, 
since the corrections will be of a higher order of 
Slllallness than the terms considered. 

The author takes this occasion to express his 
thanks to Professor I. M. Lifshitz for his dis­
cussions of the work. 

Translated by R. T. Beyer 
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