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The magnetic properties of electrons in thin metal layers are discussed for an arbitrary 
law of dispersion. The energy levels of quasi-particles with an arbitrary law of dispersion 
in a magnetic field in the presence of a transverse potential field are determined. The 
oscillating part of the magnetic moment of a gas of such quasi-particles is calculated 
and general formulas are used for investigating the de Haas-van Alphen effect in thin 
metal layers. It is shown that the periods and amplitudes of the asci llations are de­
termined by the form of the limiting Fermi surface and depend appreciably on the ratio 
of the thickness of the layer to the "radius of the classical orbits" of the quasi­
particles. 

} IN previous papers by the authors 1 a method 
• of quasi-classical quantization of the motion 

of charged particles with an arbitrary law of dis­
persion 2 (px' Py• p)in a uniform magnetic field 

was proposer!. This method can be extended to 
the quantization in a magnetic field in the presence 
of an additional field U (y). 

For a magnetic field H along the z axis, the 
components of the kinetic momentum operator P may 
be conveniently chosen as 

v .iJv .iJ 
Py = -th ay' Pz = Pz =- th iJz 

v " ) i.e., taking y = (Px- Px c/ell. 
Thus, the rr amiltonian of the particles has the 

form 

Classical motion of the particles is described 
by the equations 

<f)* (P.~, Py, Pz) = const, 

Pz = Pz = const, P.r: = const, 

1 I. M. Lifshitz and A. M. Kosevich, Dokl. Akad. 
Nauk SSSR 96, 963 (1954); A.M. Kosevich and I. l\1. 
Lifshitz, J. Ex per. Theoret. Phys. USSR 29, 730 (1955). 

and quasi-classical quantization is given by 1 

(l) 

== S (E, pz, P.~; H) 

( + ) 21te'liH 
=n r-c-· O<r<I 

where the integral is to be taken over the region 
bounde:l by the plane curve 
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(2) 

+ U [(P.l"- p.r;) c I eH] = E == const 

Pz = Pz = const, P.r: = const. 

Equation (1) implicitly determines the depend­
ence of the energy level E on the quantum number 
nand the components Pz and Px· 

E = En (pz, p_.; H). (3) 

Paving in mind the application of the formulas 
obtainerl to the study of the electron gas in a 
metal layer of finite thickness, we take U (y) as 
having the form of infinitely high potential walls 
at the metal surface: 

U(y)=O, IYi<a; U(y)=oo, IYI>a(4) 

where a is the half-thickness of the layer. For 
this case the region (2) is given by the conditions 

<f) (Px, Py, Pz) = E, I P.,- Px / < I e ~ H a, (S) 

Pz = Pz = const, p_,. = const. 
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Let R 2tpz' E) be the right-hand extreme value 

of the P x coordinate of the plane closed curve 

cf) (P.,, Py, Pz) = E, Pz = Pz = const, (6) 

and R 1( Pz• E )the left-hand extreme value of the 

P coordinate of the curve (Fig. 1). If 
X 

R ( E) I e I H 
2 Pz, <Px + -c- a, 

lei H R1 (pz, E)> Px -'-c -a, 

(7) 

then the closed curve (6) lies completely between 

the straight lines Px = Px ± eHa/c (Fig. 1), and 

the quasi-particle can be considered as "free" 
and its energy levels are determined by the 
formulas given earlier 1 • 

F'IG. 1. 

FIG. 2 

P. =n +e Ha 
;r; f';r; 1: 

If the condition (7) is not satisfied, then the 
area of the region (5) .enterin~ into (l) is the area 
bounded ~ the curve (fl) and the straight lines 
(or only one of them) Px = Px ± el!a/c (Fig. 2). 

Since this a-ea depends on a, the energy levels 
in this case will also depend on a: 

E=E(p p·ff) n z, _r, , a . (8) 

2. Knowing the values of the energy levels (3) 
or (8) of a single particle, we can determine the 
oscillating part of the magnetic moment of a Fermi 
gas consisting of such particles. The magnetic 
moment of the gas contained in a volume having 
linear dirrensions L in the x and z directions is 
given by 

[2 \ 
M =- 2 (:t.rt1i)" ~ J dp .• 

n 

(9) 

X 

where f( f) is the Fermi distribution function f( f) 
= (ef + l)- 1 , (is the chemical potential and e 
=kT. 

To separate out the oscillating part of the mag­
netic moment, we use the Poisson formula, re­
placing the summation with respect to n by an 
integration. The relevant part of the formula has 
the form 

Mosc 
(10) 

f2 00 (';' ) 

= ~ ~;1i~ ~ Re { ~ cp (En) exp (2-rrkin) dn ~ ; 
k ~l \ 0 J 

where cp( En) denotes the expression under 
the summation sign in (9). 

Taking account of (l) and the equation 
as- as 

aE;aH = (S- H all )/II aE which follows from 

it, we can go over in the integrals of (10) to an 
integration with respect to E 

00 

I k = ~ cp (En) e2"kin dn (ll) 

u 

00 

= . c " e-21tkiy \ dEj (E- ~) 
'L.rte1iH· ) 8 

0 

X { ~~ dp.rdPz ( S- H ~~) exp [ikcS / enH] t, 
S>o J 

where S = S (F, P z, P x; H). Since the argument 

of the exponential in (11) is, according to our as­
sumptions, a very large numLer, we can apply the 
rnethod of steepest descent to calculate the in­
tegral in curly brackets. Tf we assume the 
stationary noint ( rJS/apx = as,/apz = 0) to be 
isolated, we obtain 
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I 1 { 2 k . . 1t • 71:} 
h ~ kH exp - 'It L"( + z4 + z 4 

X f(E; ~) exp [ikcSm (E, H) I ehH]. 

where S ( E, H) is the extreme value of 
S(E, Pz~ px;H)for constant E. The sign of the 

phase iTT/ 4 is the sarne as the sign of the 
derivative (a2S/ap 2 ) or (a2S/ap2 ) taken at 

z m x m 
the extreme point. 

Because of the extreme steepness of the func­
tion f [( E -' )/ e] in the neighborhood of 
E "' ,, the main contribution to lk for El0:' comes 
from the integration close to the limiting energy. 
This integration finally p;ives 

(12) 

[ .kcSm(~,lf) .11: .~; .11: ·] 

X exp t ekH + t 2 ± t 4 + t 4 - 2'1tktj , 

where 

As can be seen from (12) the period of oscillation 
is given by 

£).(~) (13) 

211:e1i. 
= -c- II Sm (C,H)- H(oSm (C, H) I oH) I, 

which shows that the period L'l ( l/ll) of oscil­
lation depends on the value of the magnetic fielrl 
!1. 

3. We shall now apply the general formulas ob­
tained for a gas of quasi-particles in an arbitrary 
potential fielo to the case of an electron gas in a 
metal layer of finite thickness whose walls we 
shall replace by the infinitely high potential 
walls (4). The calculation of the integral/k in 
this case is somewhat changed. This is connected 
with the fact that for 

R2 (p~. C)< Px + I e I H a, 
c 

o I el H 
RI(Pz, C)> Px- -c-a' 

the energy levels are independent of Px· where 
p~ corresponds to the maximum valueS~ (')of 

the area of cross section S0 (,, Pz) of the surface 
t (P , P , P ) ='by planes PH= const. Thus 

X y Z • 

the expression for I k assumes different forms for 
different ratios of the thickness 2a of the layer, 
to the "diameter" cD/eH of the orbit of the 
quasi-partie le: 

l) If D (p~, C)== R2 (p~, C) 

-Rl(p~, C)< 2eH a, 
c (14) 

lh = - [e~ 2a - D (p;, C) J 

X 

where 

(eli I c)'/, s~, (~) '¥ (ftA.O) 

)( k" 1• v 21tH I()" so (~. Pz) I ap; I~' 

exp {ike S~ (~) 1 eMf- 21tkiy + i (; ± ~ )} 
as~ cq 1 a~ ' 

• 0 nc0 dS~n (~) 
/, =-----

ekH d~ 

2) If D(p~. ') > 2(eH/c )a the expression for 

lk is the same as(12),where S(E, Pz• px; H) is 

to be understood as the area bounded by the curve 
(5) and the straight lines Px =px ±eHa/c. 

The corresponding periods of oscillation of 
magnetic moment in these two cases are given by 
different formulas, namely, 

a) forD< 2eHa/c, the period of oscilllation is 
given by 
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where S 0 ( t;") is the extreme area bounded by the 
curve (6Jfor E = t;"; 

b) forD> 2ella/c the period is given by (13), 
where S ( t;", H) is to be understood as the ex-

m 

treme value of the "cut-off" area (Fig. 2 ). Since 
S ( (, H) den ends on a, the period tl ( 1/ H) in 

m 

this case depends both on the magnetic field and 
the thickness of the layer. 

It should be noted that for the electron gas in a 
metal layer, the dependence of the period tl ( 1/H) 
on H occurs only for thicknesses smaller than the 
mean "radius" of the electron orbit. Powever, 
the deoendence of the amplitude of the oscillations 
on the layer thickness begins to appear at larger 
thicknesses [see F:q. (14)]. 

For an electron g~s with a quadratic law of dis­
persion 2 = p 2 ;2m, the curve (6) is a circle and 

D(p~. t;") = 2y' 2m t;" (p~ = 0 ). As has been 

pointed out, the formula for the magnetic moment 
of such a gas in a metal layer depends on the 
size of the ratio 

Vf=2a / e~D = eHalcV2mC 

~ ( 1 I H) = eh I mcC, 

Equation (15) gives the explicit depenrlence of the 
period of oscillation onll and the layer thickness 
a for o < 1. 

It should be noted that~in determining the mag­
nitude of the extreme area of cross section of the 
Fermi surface from experimental data,it should be 
possible to establish that the depenrlence of the 
Period fl( 1/H) on H appears at thicknesses 
a"-' 10-4 to 10-5 em (in fields H "-' 10 3 to 104 oe ). 

In order to apply the above results to the in­
vestigation of the magnetic properties of metallic 

Foro> 1 the oscillating part of the magnetic 
moment is given by (lO) and (14), where 

S~n (E)= 2-:-;m£, 

dS<),.IdE = 2rrm, lo2Siop;j = 2rr, 

and for o < l, by (lO) and (12) in which we must 
use the relations 

Sm(C,H)=4mCCVo(1-o)+ sin- 1 Vf); 

oSm (C, H) I oC = 4m sin- 1 ·vf 

H(oS I oH)m, t: = BmCVo (1- o), 

The expressions obtained for the oscillating 
part of the magnetic moment of a free electron gas from the 
general formulas (10), (12) and (14) go over into 
the expressions obtained earlier by the authors 
from direct calculations 2 • We give here only the 
formulas for the periorls of oscillation 

o> 1; 
(15) 

films, it is essential that the metallic film, or the 
packet of metallic films, should be nearly a single 
crystal or else the scatter of the orientations of 
the single crystals will lead to smearing out or 
complete extinction of the oscillations of the 
magnetic moment. 

2 I. l\1. Lifshitz and A. M. Kosevich, Dokl. Akad. 
Nauk SSSR 91, 795 (1953), 

Translated by D. Shoenberg 
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